Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jul;66(4):303-6.
doi: 10.1007/s12576-016-0436-5. Epub 2016 Feb 24.

Circadian adaptation to cell injury stresses: a crucial interplay of BMAL1 and HSF1

Affiliations
Review

Circadian adaptation to cell injury stresses: a crucial interplay of BMAL1 and HSF1

Teruya Tamaru et al. J Physiol Sci. 2016 Jul.

Abstract

The circadian clock system confers daily anticipatory physiological processes with the ability to be reset by environmental cues. This "circadian adaptation system" (CAS), driven by cell-autonomous molecular clocks, orchestrates various rhythmic physiological processes in the entire body. Hence, the dysfunction of these clocks exacerbates various diseases, which may partially be due to the impairment of protective pathways. If this is the case, how does the CAS respond to cell injury stresses that are critical in maintaining health and life by evoking protective pathways? To address this question, here we review and discuss recent evidence revealing life-protective (pro-survival) molecular networks between clock (e.g., BMAL1, CLOCK, and PER2) and adaptation (e.g., HSF1, Nrf2, NF-κB, and p53) pathways, which are evoked by various cell injury stresses (e.g., heat, reactive oxygen species, and UV). The CK2 protein kinase-integrated interplay of the BMAL1 (clock) and HSF1 (heat-shock response) pathways is one of the crucial events in CAS.

Keywords: Adaptation; Circadian clock; Heat shock; Oxidative stress; Protein kinase.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Critical stress reset circadian clocks to evoke life-protection systems. See the text for more details
Fig. 2
Fig. 2
The triangle network hypothesis of circadian adaptation systems (CAS). See the text for more details

Similar articles

Cited by

References

    1. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–941. doi: 10.1038/nature00965. - DOI - PubMed
    1. Doherty CJ, Kay SA. Circadian control of global gene expression patterns. Annu Rev Genet. 2010;44:419–444. doi: 10.1146/annurev-genet-102209-163432. - DOI - PMC - PubMed
    1. Ikeda M, Nomura M. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun. 1997;233:258–264. doi: 10.1006/bbrc.1997.6371. - DOI - PubMed
    1. Bunger MK, Wilsbacher LD, Moran SM, Cledenin C, Radcriffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 2000;103:1009–1017. doi: 10.1016/S0092-8674(00)00205-1. - DOI - PMC - PubMed
    1. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999;398:627–630. doi: 10.1038/19323. - DOI - PubMed

MeSH terms

Substances