Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar;139(Pt 3):708-22.
doi: 10.1093/brain/awv389. Epub 2016 Feb 8.

Thalamic pain: anatomical and physiological indices of prediction

Affiliations

Thalamic pain: anatomical and physiological indices of prediction

Nuutti Vartiainen et al. Brain. 2016 Mar.

Abstract

Thalamic pain is a severe and treatment-resistant type of central pain that may develop after thalamic stroke. Lesions within the ventrocaudal regions of the thalamus carry the highest risk to develop pain, but its emergence in individual patients remains impossible to predict. Because damage to the spino-thalamo-cortical system is a crucial factor in the development of central pain, in this study we combined detailed anatomical atlas-based mapping of thalamic lesions and assessment of spinothalamic integrity using quantitative sensory analysis and laser-evoked potentials in 42 thalamic stroke patients, of whom 31 had developed thalamic pain. More than 97% of lesions involved an area between 2 and 7 mm above the anterior-posterior commissural plane. Although most thalamic lesions affected several nuclei, patients with central pain showed maximal lesion convergence on the anterior pulvinar nucleus (a major spinothalamic target) while the convergence area lay within the ventral posterior lateral nucleus in pain-free patients. Both involvement of the anterior pulvinar nucleus and spinothalamic dysfunction (nociceptive thresholds, laser-evoked potentials) were significantly associated with the development of thalamic pain, whereas involvement of ventral posterior lateral nucleus and lemniscal dysfunction (position sense, graphaesthesia, pallaesthesia, stereognosis, standard somatosensory potentials) were similarly distributed in patients with or without pain. A logistic regression model combining spinothalamic dysfunction and anterior pulvinar nucleus involvement as regressors had 93% sensitivity and 87% positive predictive value for thalamic pain. Lesion of spinothalamic afferents to the posterior thalamus appears therefore determinant to the development of central pain after thalamic stroke. Sorting out of patients at different risks of developing thalamic pain may be achievable at the individual level by combining lesion localization and functional investigation of the spinothalamic system. As the methods proposed here do not need complex manipulations, they can be added to routine patients' work up, and the results replicated by other investigators in the field.

Keywords: CPSP; LEPs; laser-evoked potentials; thalamic pain; thalamus.

PubMed Disclaimer

Publication types