Tubular electrodeposition of chitosan-carbon nanotube implants enriched with calcium ions
- PMID: 26913639
- DOI: 10.1016/j.jmbbm.2016.02.012
Tubular electrodeposition of chitosan-carbon nanotube implants enriched with calcium ions
Abstract
A new approach for obtaining chitosan-carbon nanotube implants enriched with calcium ions in the form of tubular hydrogels is fostered. The intended application of the hydrogels is tissue engineering, especially peripheral nervous tissue regeneration. The fabrication method, based on an electrodeposition phenomenon, shows significant advantages over current solutions as implants can now be obtained rapidly at any required dimensions. Thus, it may open a new avenue to treat patients with peripheral nerve injuries. Either single walled or multiwalled carbon nanotubes enhance the mechanical properties of the tubular hydrogels. The controlled presence of calcium ions, sourced from hydroxyapatite, is also expected to augment the regenerative response. Because in vitro cytotoxic assays on mouse cell lines (L929 fibroblasts and mHippoE-18 hippocampal cells) as well as pro-inflammatory tests on THP-1XBlue™ cells show that the manufactured implants are biocompatible, we next intend to evaluate their immune- and nervous-safety on an animal model.
Keywords: Carbon nanotubes; Chitosan; Electrodeposition; Hydroxyapatite; Nerve regeneration.
Copyright © 2016 Elsevier Ltd. All rights reserved.
Similar articles
-
Chitosan-based hydrogel implants enriched with calcium ions intended for peripheral nervous tissue regeneration.Carbohydr Polym. 2016 Jan 20;136:764-71. doi: 10.1016/j.carbpol.2015.09.105. Epub 2015 Oct 23. Carbohydr Polym. 2016. PMID: 26572411
-
Assessment of degradation and biocompatibility of electrodeposited chitosan and chitosan-carbon nanotube tubular implants.J Biomed Mater Res A. 2016 Nov;104(11):2701-11. doi: 10.1002/jbm.a.35812. Epub 2016 Jul 5. J Biomed Mater Res A. 2016. PMID: 27325550
-
Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.J Mater Sci Mater Med. 2016 Aug;27(8):126. doi: 10.1007/s10856-016-5740-3. Epub 2016 Jun 20. J Mater Sci Mater Med. 2016. PMID: 27324780 Free PMC article.
-
Current Progress in Biomedical Applications of Chitosan-Carbon Nanotube Nanocomposites: A Review.Mini Rev Med Chem. 2020;20(16):1619-1632. doi: 10.2174/1389557520666200513120407. Mini Rev Med Chem. 2020. PMID: 32400329 Review.
-
Electrodeposition of Polysaccharide and Protein Hydrogels for Biomedical Applications.Curr Med Chem. 2020;27(16):2610-2630. doi: 10.2174/0929867326666191212163955. Curr Med Chem. 2020. PMID: 31830879 Review.
Cited by
-
Recent Advances in Copper-Doped Titanium Implants.Materials (Basel). 2022 Mar 22;15(7):2342. doi: 10.3390/ma15072342. Materials (Basel). 2022. PMID: 35407675 Free PMC article. Review.
-
Functional evaluation and testing of a newly developed Teleost's Fish Otolith derived biocomposite coating for healthcare.Sci Rep. 2020 Jan 14;10(1):258. doi: 10.1038/s41598-019-57128-w. Sci Rep. 2020. PMID: 31937812 Free PMC article.
-
Regeneration of sciatic nerve crush injury by a hydroxyapatite nanoparticle-containing collagen type I hydrogel.J Physiol Sci. 2018 Sep;68(5):579-587. doi: 10.1007/s12576-017-0564-6. Epub 2017 Sep 6. J Physiol Sci. 2018. PMID: 28879494 Free PMC article.
-
Fabrication and Characterization of Polycaprolactone/Chitosan-Hydroxyapatite Hybrid Implants for Peripheral Nerve Regeneration.Polymers (Basel). 2021 Mar 3;13(5):775. doi: 10.3390/polym13050775. Polymers (Basel). 2021. PMID: 33802478 Free PMC article.
-
Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration.Mil Med Res. 2024 Feb 18;11(1):13. doi: 10.1186/s40779-024-00519-6. Mil Med Res. 2024. PMID: 38369464 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources