Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;44(1):165-76.
doi: 10.1142/S0192415X16500117.

Sophoraflavanone G Induces Apoptosis in Human Leukemia Cells and Blocks MAPK Activation

Affiliations

Sophoraflavanone G Induces Apoptosis in Human Leukemia Cells and Blocks MAPK Activation

Zih-Ying Li et al. Am J Chin Med. 2016.

Abstract

Sophoraflavanone G (SG) was isolated from Sophora flavescens. Previously, we have found that SG is able to suppress the inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophages. This study aimed to evaluate the effects of SG on apoptosis, and explore its molecular mechanism in human leukemia HL-60 cells. HL-60 cells were treated with various concentrations of SG (3-30 [Formula: see text]M). The viability of the HL-60 cells was assessed using the MTT method, and the nuclear condensation indicative of apoptosis was observed by DAPI fluorescence staining. In addition, apoptotic signal proteins were examined using Western blotting. The results showed that apoptosis, including DNA fragmentation and nuclear condensation, increased significantly in SG-treated HL-60 cells. SG activated caspase-3 and caspase-9, and downregulated Bcl-2 and Bcl-xL. SG also upregulated Bax and released cytochrome c from the mitochondria into the cytoplasm, enabling apoptosis via the mitochondrially-mediated "intrinsic" pathway. Additionally, SG was able to cleave poly (ADP-ribose) polymerase 1 and activate mitogen-activated protein kinase (MAPK) pathways. These results suggest that SG might increase the effect of apoptosis on HL-60 cells through caspase-3 activation, mitochondrial-mediated pathways, and the MAPK pathway.

Keywords: Apoptosis; Bax; Caspase-3; PARP-1; Sophoraflavanone G.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources