Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov 2;57(16):3489-3507.
doi: 10.1080/10408398.2016.1140632.

Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies

Affiliations
Free article
Review

Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies

Imourana Alassane-Kpembi et al. Crit Rev Food Sci Nutr. .
Free article

Abstract

Mycotoxins are secondary fungal metabolites produced mainly by Aspergillus, Penicillium, and Fusarium. As evidenced by large-scale surveys, humans and animals are simultaneously exposed to several mycotoxins. Simultaneous exposure could result in synergistic, additive or antagonistic effects. However, most toxicity studies addressed the effects of mycotoxins separately. We present the experimental designs and we discuss the conclusions drawn from in vitro experiments exploring toxicological interactions of mycotoxins. We report more than 80 publications related to mycotoxin interactions. The studies explored combinations involving the regulated groups of mycotoxins, especially aflatoxins, ochratoxins, fumonisins, zearalenone and trichothecenes, but also the "emerging" mycotoxins beauvericin and enniatins. Over 50 publications are based on the arithmetic model of additivity. Few studies used the factorial designs or the theoretical biology-based models of additivity. The latter approaches are gaining increased attention. These analyses allow determination of the type of interaction and, optionally, its magnitude. The type of interaction reported for mycotoxin combinations depended on several factors, in particular cell models and the tested dose ranges. However, synergy among Fusarium toxins was highlighted in several studies. This review indicates that well-addressed in vitro studies remain valuable tools for the screening of interactive potential in mycotoxin mixtures.

Keywords: Additivity; antagonism; multi-contamination; mycotoxins; synergy; toxicological interactions.

PubMed Disclaimer