Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 26;11(2):e0149687.
doi: 10.1371/journal.pone.0149687. eCollection 2016.

Soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) Is Elevated in Bronchoalveolar Lavage Fluid of Patients with Acute Respiratory Distress Syndrome

Affiliations

Soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) Is Elevated in Bronchoalveolar Lavage Fluid of Patients with Acute Respiratory Distress Syndrome

Engi F Attia et al. PLoS One. .

Abstract

Introduction: Pulmonary vascular endothelial activation has been implicated in acute respiratory distress syndrome (ARDS), yet little is known about the presence and role of endothelial activation markers in the alveolar space in ARDS. We hypothesized that endothelial activation biomarkers would be differentially expressed in bronchoalveolar lavage fluid from patients with ARDS compared with healthy volunteers, and that biomarker concentrations would be associated with ARDS severity.

Methods: We performed a cross-sectional analysis of data from 26 intubated patients with ARDS undergoing evaluation for clinically suspected ventilator-associated pneumonia and five healthy volunteers. Patients underwent bronchoalveolar lavage a median of five days after intubation. Healthy volunteers also underwent bronchoalveolar lavage. Endothelial activation biomarkers (soluble vascular cell adhesion molecule-1 [sVCAM-1], soluble endothelial selectin [sESEL], angiopoietin-1 [Ang-1] and angiopoietin-2 [Ang-2]) were measured in bronchoalveolar lavage fluid. Clinically suspected ventilator-associated pneumonia was confirmed with microbiologic culture data.

Results: Patients with ARDS had significantly higher median sVCAM-1 concentrations in the bronchoalveolar lavage fluid compared with healthy volunteers (985 vs 119 pg/mL, p = 0.03). Additionally, there was a trend toward greater bronchoalveolar lavage fluid sVCAM-1 concentrations among patients with moderate/severe compared to mild ARDS (1395 vs 209 pg/mL, p = 0.06). We did not detect significant differences in bronchoalveolar lavage fluid levels of sESEL, Ang-1 or Ang-2 between patients with ARDS and healthy volunteers. Median bronchoalveolar lavage fluid biomarker levels did not differ between patients with and without microbiologically-confirmed ventilator-associated pneumonia.

Conclusions: sVCAM-1 concentrations were significantly higher in the bronchoalveolar lavage fluid of patients with ARDS compared to healthy controls, and tended to be higher in moderate/severe ARDS compared to mild ARDS. Our findings add to the growing evidence supporting the concept that endothelial activation plays an important mechanistic role in the pathogenesis of ARDS. Further studies are necessary to characterize the role and/or clinical significance of sVCAM-1 and other endothelial activation markers present in the alveolar space in ARDS.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Levels of endothelial activation biomarkers in bronchoalveolar lavage fluid, by ARDS severity and microbiologically-confirmed ventilator-associated pneumonia.
Panel A: Bronchalveolar lavage fluid (BALF) biomarker levels stratified by presence and severity of acute respiratory distress syndrome (ARDS) (**Control vs. ARDS, p = 0.03, Mild vs. Moderate/Severe ARDS p = 0.06). Panel B: BALF biomarker levels stratified by presence of microbiologically-confirmed ventilator-associated pneumonia (VAP).
Fig 2
Fig 2. Levels of endothelial activation biomarkers in bronchoalveolar lavage fluid of ARDS patients by PaO2:FiO2 ratios.

References

    1. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005; 353:1685–1693. - PubMed
    1. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012; 122:2731–2740. 10.1172/JCI60331 - DOI - PMC - PubMed
    1. Bhargava M, Wendt CH. Biomarkers in acute lung injury. J Lab Clin Med 2012; 159:205–217. - PMC - PubMed
    1. Orfanos SE, Mavrommati I, Korovesi I, Roussos C. Pulmonary endothelium in acute lung injury: from basic science to the critically ill. Intensive Care Med 2004; 30:1702–1714. - PubMed
    1. Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL, et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 2006; 12:1286–1293. - PMC - PubMed

LinkOut - more resources