Microstructural properties of premotor pathways predict visuomotor performance in chronic stroke
- PMID: 26920656
- PMCID: PMC6867514
- DOI: 10.1002/hbm.23155
Microstructural properties of premotor pathways predict visuomotor performance in chronic stroke
Abstract
Microstructural properties of the corticospinal tract (CST) descending from the motor cortex predict strength and motor skill in the chronic phase after stroke. Much less is known about the relation between brain microstructure and visuomotor processing after stroke. In this study, individual's poststroke and age-matched controls performed a unimanual force task separately with each hand at three levels of visual gain. We collected diffusion MRI data and used probabilistic tractography algorithms to identify the primary and premotor CSTs. Fractional anisotropy (FA) within each tract was used to predict changes in force variability across different levels of visual gain. Our observations revealed that individuals poststroke reduced force variability with an increase in visual gain, performed the force task with greater variability as compared with controls across all gain levels, and had lower FA in the primary motor and premotor CSTs. Our results also demonstrated that the CST descending from the premotor cortex, rather than the primary motor cortex, best predicted force variability. Together, these findings demonstrate that the microstructural properties of the premotor CST predict visual gain-related changes in force variability in individuals poststroke. Hum Brain Mapp 37:2039-2054, 2016. © 2016 Wiley Periodicals, Inc.
Keywords: chronic stroke; corticospinal tract; diffusion tensor imaging; fractional anisotropy; tractography; visual gain.
© 2016 Wiley Periodicals, Inc.
Figures
References
-
- Bastian AJ (2006): Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16:645–649. - PubMed
-
- Bohannon RW, Smith MB (1987): Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67:206–207. - PubMed
-
- Brewer BR, Fagan M, Klatzky RL, Matsuoka Y (2005): Perceptual limits for a robotic rehabilitation environment using visual feedback distortion. IEEE Trans Neural Syst Rehabil Eng 13:1–11. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
