Co-fibrillogenesis of Wild-type and D76N β2-Microglobulin: THE CRUCIAL ROLE OF FIBRILLAR SEEDS
- PMID: 26921323
- PMCID: PMC4850305
- DOI: 10.1074/jbc.M116.720573
Co-fibrillogenesis of Wild-type and D76N β2-Microglobulin: THE CRUCIAL ROLE OF FIBRILLAR SEEDS
Abstract
The amyloidogenic variant of β2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type β2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type β2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of β2-microglobulin lacking the first six N-terminal residues. Interestingly, the hybrid wild-type/variant fibrillar material acquired a thermodynamic stability similar to that of homogenous D76N β2-microglobulin fibrils and significantly higher than the wild-type homogeneous fibrils prepared at neutral pH in the presence of 20% trifluoroethanol. These results suggest that the surface of D76N β2-microglobulin fibrils can favor the transition of the wild-type protein into an amyloid conformation leading to a rapid integration into fibrils. The chaperone crystallin, which is a mild modulator of the lag phase of the variant fibrillogenesis, potently inhibits fibril elongation of the wild-type even once it is absorbed on D76N β2-microglobulin fibrils.
Keywords: Fourier transform IR (FTIR); amyloid; fibril; protein aggregation; protein misfolding; β2-microglobulin.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Figures













Similar articles
-
Structure, folding dynamics, and amyloidogenesis of D76N β2-microglobulin: roles of shear flow, hydrophobic surfaces, and α-crystallin.J Biol Chem. 2013 Oct 25;288(43):30917-30. doi: 10.1074/jbc.M113.498857. Epub 2013 Sep 6. J Biol Chem. 2013. PMID: 24014031 Free PMC article.
-
A specific nanobody prevents amyloidogenesis of D76N β2-microglobulin in vitro and modifies its tissue distribution in vivo.Sci Rep. 2017 Apr 21;7:46711. doi: 10.1038/srep46711. Sci Rep. 2017. PMID: 28429761 Free PMC article.
-
The extracellular chaperone haptoglobin prevents serum fatty acid-promoted amyloid fibril formation of β2-microglobulin, resistance to lysosomal degradation, and cytotoxicity.J Biol Chem. 2013 Nov 8;288(45):32326-32342. doi: 10.1074/jbc.M113.498337. Epub 2013 Sep 27. J Biol Chem. 2013. PMID: 24078632 Free PMC article.
-
Systemic amyloidosis: lessons from β2-microglobulin.J Biol Chem. 2015 Apr 17;290(16):9951-8. doi: 10.1074/jbc.R115.639799. Epub 2015 Mar 6. J Biol Chem. 2015. PMID: 25750126 Free PMC article. Review.
-
Molecular interactions in the formation and deposition of beta2-microglobulin-related amyloid fibrils.Amyloid. 2005 Mar;12(1):15-25. doi: 10.1080/13506120500032352. Amyloid. 2005. PMID: 16076607 Review.
Cited by
-
The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism.Nat Commun. 2018 Oct 30;9(1):4517. doi: 10.1038/s41467-018-06761-6. Nat Commun. 2018. PMID: 30375379 Free PMC article.
-
A FTIR microspectroscopy study of the structural and biochemical perturbations induced by natively folded and aggregated transthyretin in HL-1 cardiomyocytes.Sci Rep. 2018 Aug 21;8(1):12508. doi: 10.1038/s41598-018-30995-5. Sci Rep. 2018. PMID: 30131519 Free PMC article.
-
Pathogenic D76N Variant of β2-Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States.Biology (Basel). 2021 Nov 17;10(11):1197. doi: 10.3390/biology10111197. Biology (Basel). 2021. PMID: 34827190 Free PMC article.
-
Synthesis of Bioactive Silver Nanoparticles by a Pseudomonas Strain Associated with the Antarctic Psychrophilic Protozoon Euplotes focardii.Mar Drugs. 2020 Jan 3;18(1):38. doi: 10.3390/md18010038. Mar Drugs. 2020. PMID: 31947807 Free PMC article.
-
Increasing the accuracy of proteomic typing by decellularisation of amyloid tissue biopsies.J Proteomics. 2017 Aug 8;165:113-118. doi: 10.1016/j.jprot.2017.06.016. Epub 2017 Jun 21. J Proteomics. 2017. PMID: 28647518 Free PMC article.
References
-
- Bellotti V., and Chiti F. (2008) Amyloidogenesis in its biological environment: challenging a fundamental issue in protein misfolding diseases. Curr. Opin. Struct. Biol. 18, 771–779 - PubMed
-
- Booth D. R., Sunde M., Bellotti V., Robinson C. V., Hutchinson W. L., Fraser P. E., Hawkins P. N., Dobson C. M., Radford S. E., Blake C. C., and Pepys M. B. (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787–793 - PubMed
-
- Colon W., and Kelly J. W. (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 8654–8660 - PubMed
-
- Naiki H., Hashimoto N., Suzuki S., Kimura H., Nakakuki K., and Gejyo F. (1997) Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 4, 223–232
-
- Valleix S., Gillmore J. D., Bridoux F., Mangione P. P., Dogan A., Nedelec B., Boimard M., Touchard G., Goujon J. M., Lacombe C., Lozeron P., Adams D., Lacroix C., Maisonobe T., Planté-Bordeneuve V., et al. (2012) Hereditary systemic amyloidosis due to Asp76Asn variant β2-microglobulin. N. Engl. J. Med. 366, 2276–2283 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials