Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 22;60(5):2849-57.
doi: 10.1128/AAC.02286-15. Print 2016 May.

Activity of Ceftazidime-Avibactam against Extended-Spectrum- and AmpC β-Lactamase-Producing Enterobacteriaceae Collected in the INFORM Global Surveillance Study from 2012 to 2014

Affiliations

Activity of Ceftazidime-Avibactam against Extended-Spectrum- and AmpC β-Lactamase-Producing Enterobacteriaceae Collected in the INFORM Global Surveillance Study from 2012 to 2014

James A Karlowsky et al. Antimicrob Agents Chemother. .

Abstract

The in vitro activity of ceftazidime-avibactam was evaluated against 34,062 isolates of Enterobacteriaceae from patients with intra-abdominal, urinary tract, skin and soft-tissue, lower respiratory tract, and blood infections collected in the INFORM (International Network For Optimal Resistance Monitoring) global surveillance study (176 medical center laboratories in 39 countries) in 2012 to 2014. Overall, 99.5% of Enterobacteriaceae isolates were susceptible to ceftazidime-avibactam using FDA approved breakpoints (susceptible MIC of ≤8 μg/ml; resistant MIC of ≥16 μg/ml). For individual species of the Enterobacteriaceae, the ceftazidime-avibactam MIC inhibiting ≥90% of isolates (MIC90) ranged from 0.06 μg/ml for Proteus species to 1 μg/ml for Enterobacter spp. and Klebsiella pneumoniae Carbapenem-susceptible isolates of Escherichia coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis with a confirmed extended-spectrum β-lactamase (ESBL) phenotype, or a ceftazidime MIC of ≥16 μg/ml if the ESBL phenotype was not confirmed by clavulanic acid inhibition, were characterized further to identify the presence of specific ESBL- and plasmid-mediated AmpC β-lactamase genes using a microarray-based assay and additional PCR assays. Ceftazidime-avibactam demonstrated potent activity against molecularly confirmed ESBL-producing (n = 5,354; MIC90, 0.5 μg/ml; 99.9% susceptible), plasmid-mediated AmpC-producing (n = 246; MIC90, 0.5 μg/ml; 100% susceptible), and ESBL- and AmpC-producing (n = 152; MIC90, 1 μg/ml; 100% susceptible) isolates of E. coli, K. pneumoniae, K. oxytoca, and P. mirabilis We conclude that ceftazidime-avibactam demonstrates potent in vitro activity against globally collected clinical isolates of Enterobacteriaceae, including isolates producing ESBLs and AmpC β-lactamases.

PubMed Disclaimer

References

    1. Bush K. 2013. Proliferation and significance of clinically relevant β-lactamases. Ann N Y Acad Sci 1277:84–90. doi: 10.1111/nyas.12023. - DOI - PubMed
    1. Bush K, Fisher JF. 2011. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol 65:455–478. doi: 10.1146/annurev-micro-090110-102911. - DOI - PubMed
    1. Jacoby GA. 2009. AmpC β-lactamases. Clin Microbiol Rev 22:161–182. doi: 10.1128/CMR.00036-08. - DOI - PMC - PubMed
    1. Ehmann DE, Jahić H, Ross PL, Gu RF, Hu J, Kern G, Walkup GK, Fisher SL. 2012. Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc Natl Acad Sci U S A 109:11663–11668. doi: 10.1073/pnas.1205073109. - DOI - PMC - PubMed
    1. Livermore DM, Mushtaq S, Warner M, Zhang JC, Maharjan S, Doumith M, Woodford N. 2011. Activities of NXL-104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 55:390–394. doi: 10.1128/AAC.00756-10. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources