Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan;97(1):122-127.
doi: 10.1002/jsfa.7695. Epub 2016 Apr 13.

Over-expression of (1,3;1,4)-β-D-glucanase isoenzyme EII gene results in decreased (1,3;1,4)-β-D-glucan content and increased starch level in barley grains

Affiliations

Over-expression of (1,3;1,4)-β-D-glucanase isoenzyme EII gene results in decreased (1,3;1,4)-β-D-glucan content and increased starch level in barley grains

Ning Han et al. J Sci Food Agric. 2017 Jan.

Abstract

Background: High content of (1,3;1,4)-β-d-glucan in barley grains is regarded as an undesirable factor affecting malting potential, brewing yield and feed utilization. Production of thermostable bacterial (1,3;1,4)-β-glucanase in transgenic barley grain or supplementation of exogenous bacterial (1,3;1,4)-β-glucanase has been used to improve malt and feed quality. The aim of the present study was to investigate the effect of over-expression of an endogenous (1,3;1,4)-β-glucanase on β-glucan content and grain composition in barley.

Results: A construct containing full-length HvGlb2 cDNA encoding barley (1,3;1,4)-β-glucanase isoenzyme EII under the control of a promoter of barley D-Hordein gene Hor3-1 was introduced into barley cultivar Golden Promise via Agrobacterium-mediated transformation, and transgenic plants were regenerated after hygromycin selection. The T2 generation of proHor3:HvGlb2 transgenic lines showed increased activity of (1,3;1,4)-β-glucanase in grains. Total β-glucan content was reduced by more than 95.73% in transgenic grains compared with the wild-type control. Meanwhile, over-expression of (1,3;1,4)-β-glucanase led to an increase in 1000-grain weight, which might be due to elevated amounts of starch in the grain.

Conclusion: Manipulating the expression of (1,3;1,4)-β-glucanase EII can control the β-glucan content in grain with no apparent harmful effects on grain quality of transgenic plants. © 2016 Society of Chemical Industry.

Keywords: (1,3;1,4)-β-d-glucan; (1,3;1,4)-β-glucanase; starch; transgenic barley.

PubMed Disclaimer

MeSH terms

LinkOut - more resources