Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Nov 15;106(Pt A):148-156.
doi: 10.1016/j.addr.2016.02.006. Epub 2016 Feb 27.

Extracellular vesicles for drug delivery

Affiliations
Review

Extracellular vesicles for drug delivery

Pieter Vader et al. Adv Drug Deliv Rev. .

Abstract

Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles.

Keywords: Extracellular vesicles; biodistribution; drug delivery; exosomes; isolation; microvesicles; nanomedicine; targeting.

PubMed Disclaimer