Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;136(3):473-8.
doi: 10.1248/yakushi.15-00246-3.

[Store-operated Calcium Entry into B Cells Regulates Autoimmune Inflammation]

[Article in Japanese]
Affiliations
Free article
Review

[Store-operated Calcium Entry into B Cells Regulates Autoimmune Inflammation]

[Article in Japanese]
Yoshihiro Baba. Yakugaku Zasshi. 2016.
Free article

Abstract

Alterations in the cytosolic concentration of calcium ions (Ca(2+)) are important signals for various physiological events. The engagement of B cell receptors (BCR) results in the transient release of Ca(2+) into cytosol from endoplasmic reticulum (ER) stores. In turn, this decrease in ER luminal Ca(2+) concentration triggers the opening of Ca(2+) channels in the plasma membrane, inducing a sustained influx of extracellular Ca(2+) into cells. These processes are referred to as store-operated Ca(2+) entry (SOCE), which is an essential pathway for continuous Ca(2+) signaling. While the ER calcium sensor stromal interaction molecule (STIM) 1 and STIM2 are crucial components for SOCE activation, their physiological roles in B cells are unknown. Here we uncover the physiological function of SOCE in B cells by analyzing mice with B cell-specific deletions of STIM1 and STIM2. Our findings indicate that STIM1 and STIM2 are critical for BCR-induced SOCE, as well as the activation of nuclear factors of activated T cells (NFAT), and the subsequent production of interleukin-10 (IL-10). Although STIM proteins are not essential for B cell development and antibody responses, these molecules are required to suppress experimental autoimmune encephalomyelitis (EAE) via an IL-10-dependent mechanism. Accumulating evidence underscores the importance of IL-10-producing B cells in autoimmunity, although the identity of IL-10-producing B cells with a regulatory function in vivo remains unclear. We addressed this issue and identified plasmablasts as IL-10-producing B cells that can suppress EAE inflammation. Our data established STIM-dependent SOCE as a key signal for the regulatory plasmablasts required to limit autoimmunity.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Supplementary concepts