Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;136(3):479-83.
doi: 10.1248/yakushi.15-00246-4.

[Physiological Role of K(+) Channels in the Regulation of T Cell Function]

[Article in Japanese]
Affiliations
Free article
Review

[Physiological Role of K(+) Channels in the Regulation of T Cell Function]

[Article in Japanese]
Susumu Ohya. Yakugaku Zasshi. 2016.
Free article

Abstract

Potassium ion (K(+)) channels play an important role in the modulation of calcium ion (Ca(2+)) signaling via control of the membrane potential. In T-lymphocytes, the voltage-gated K(+) channel, KV1.3, and the intermediate-conductance Ca(2+)-activated K(+) channel, KCa3.1, predominantly contribute to K(+) conductance, and are responsible for cell proliferation, differentiation, apoptosis and infiltration. Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, afflicts more than 0.1% of the population worldwide. In the chemically-induced IBD model mouse, an increase in KCa3.1 activity was observed in mesenteric lymph node CD4(+) T-lymphocytes, concomitant with an upregulation of KCa3.1 and a positive KCa3.1 regulator, NDPK-B. Pharmacological blockade of the KCa3.1 K(+) channel by TRAM-34 and/or ICA17043 elicited 1) a significant decrease in IBD severity, as assessed by diarrhea, visible fecal blood, inflammation and crypt damage of the colon; and 2) restoration of the expression levels of KCa3.1 and Th1 cytokines in CD4(+) T-lymphocytes in the IBD model. Recent studies have indicated the impact of K2P5.1 upregulation in T lymphocytes on the pathogenesis of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. The K2P5.1 K(+) channel is therefore highlighted as a potent therapeutic target in managing the pathogenesis of autoimmune diseases. Alternatively, pre-mRNA splicing of ion channels is associated with the development and progression of various diseases, including autoimmune diseases. Therefore, mRNA-splicing mechanisms underlying the transcriptional regulation of K2P5.1 K(+) channels may be a new strategic therapeutic target for autoimmune and inflammatory diseases.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances