Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Mar 3:16:84.
doi: 10.1186/s12879-016-1417-2.

Co-distribution and co-infection of chikungunya and dengue viruses

Affiliations
Review

Co-distribution and co-infection of chikungunya and dengue viruses

Luis Furuya-Kanamori et al. BMC Infect Dis. .

Erratum in

Abstract

Background: Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution.

Methods: Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same patient. Additionally, data from WHO, CDC and Healthmap alerts were extracted to create up-to-date global distribution maps for both dengue and chikungunya.

Results: Evidence for chikungunya-dengue co-infection has been found in Angola, Gabon, India, Madagascar, Malaysia, Myanmar, Nigeria, Saint Martin, Singapore, Sri Lanka, Tanzania, Thailand and Yemen; these constitute only 13 out of the 98 countries/territories where both chikungunya and dengue epidemic/endemic transmission have been reported.

Conclusions: Understanding the true extent of chikungunya-dengue co-infection is hampered by current diagnosis largely based on their similar symptoms. Heightened awareness of chikungunya among the public and public health practitioners in the advent of the ongoing outbreak in the Americas can be expected to improve diagnostic rigour. Maps generated from the newly compiled lists of the geographic distribution of both pathogens and vectors represent the current geographical limits of chikungunya and dengue, as well as the countries/territories at risk of future incursion by both viruses. These describe regions of co-endemicity in which lab-based diagnosis of suspected cases is of higher priority.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
legend. The global distributions of endemic/epidemic dengue (top left) and chikungunya (top right) and reports of co-infection (bottom left) as well as the principal vectors of both arboviruses, Aedes aegypti and Aedes albopictus (bottom right)
Fig. 2
Fig. 2
legend. Clinical symptoms typical of dengue (top) and chikungunya infections (bottom). The red line denotes the cumulative distributions (and 95 % CI at the 25th, 50th and 75th percentiles) for the incubation period of human infection (time between initial infection and symptoms onset) for both arboviruses as reported in a recent systematic review of Rudolph et al. [58]. Dengue virus infection (top): time course for the three phases of dengue infection (febrile, critical and recovery phase) are reproduced from WHO [92]. Boxes indicating typical signs/symptoms of dengue virus infection were reproduced from Whitehead et al. [91] unless otherwise indicated. Arrows indicate that signs/symptoms may occur earlier/later than illustrated (eg. headaches may occur earlier than 4.5 days post-infection). Notes: 1Onset of the critical phase usually coincides with defeverescence and is characterised by an increase in capillary permeability and significant plasma leakage lasting 1-2 days. Disease may resolve without entering the critical phase [93]. 2Mild haemorrhagic manifestations (mucosal bleeding/petechiae/bruising) may be observed from the febrile phase. Vaginal and intestinal bleeding may occur less commonly [92]. 3Platelet counts decline during the febrile phase (broken line), reaching lowest values at defeverescence. Thrombocytopenia, however, should not be used as an early indicator for development of severe disease (dengue haemorrhagic fever) as platelet counts in the early febrile phase do not vary markedly [93]. 4Hypovolemic shock typically lasts 1-2 days and can develop during late stages of the disease [91, 92]. 5During the recovery phase, reabsorption of extravascular compartment fluid occurs over 2-3 days [92]. Chikungunya virus infection (bottom): time course for the two phases of chikungunya infection (acute and chronic phase) and typical signs and symptoms are reproduced from Suhrbier et al. [90]. 6Viraemia typically lasts 5-7 days [90] and may precede the onset of symptoms. Viraemia in symptomatic patients typically peaks within the first three days [94] and has been reported to last for up to 11 days [95]. Viraemia has also been observed to persist in some patients for 2-3 days post- defervescence [95]

References

    1. Kroeger A, Nathan M, Hombach J. Disease Watch Focus: Dengue. World Health Organization. 2004. http://www.who.int/tdr/publications/disease_watch/dengue/en/. Accessed Nov 2015
    1. Gubler DJ. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop Med Health. 2011;39:3–11. doi: 10.2149/tmh.2011-S05. - DOI - PMC - PubMed
    1. WHO . Global strategy for dengue prevention and control, 2012–2020. Geneva: World Health Organization; 2012.
    1. WHO. Sustaining the drive to overcome the global impact of neglected tropical diseases. Geneva: World Health Organization; 2013. http://www.who.int/neglected_diseases/9789241564540/en/. Accessed Nov 2015.
    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–507. doi: 10.1038/nature12060. - DOI - PMC - PubMed

Publication types