Radiative flux and forcing parameterization error in aerosol-free clear skies
- PMID: 26937058
- PMCID: PMC4758412
- DOI: 10.1002/2015GL064291
Radiative flux and forcing parameterization error in aerosol-free clear skies
Abstract
Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.
Keywords: Parameterization; Radiation; Radiative forcing.
Figures
References
-
- Alvarado, M. J. , Payne V. H., Mlawer E. J., Uymin G., Shephard M. W., Cady‐Pereira K. E., Delamere J. S., and Moncet J. L. (2013), Performance of the Line‐By‐Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: Recent updates evaluated with IASI case studies, Atmos. Chem. Phys., 13(14), 6687–6711.
-
- Andrews, T. , Gregory J. M., Webb M. J., and Taylor K. E. (2012), Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere‐ocean climate models, Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607. - DOI
-
- Cahalan, R. F. , et al. (2005), The I3RC—Bringing together the most advanced radiative transfer tools for cloudy atmospheres, Bull. Am. Meteorol. Soc., 86, 1275–1293.
-
- Cess, R. D. , et al. (1993), Uncertainties in carbon dioxide radiative forcing in atmospheric general circulation models, Science, 262(5137), 1252–1255. - PubMed
-
- Chung, E.‐S. , and Soden B. J. (2015), An assessment of direct radiative forcing, radiative adjustments, and radiative feedbacks in coupled ocean–atmosphere models, J. Clim., 28(10), 4152–4170.
LinkOut - more resources
Full Text Sources