Developmental Origins for Kidney Disease Due to Shroom3 Deficiency
- PMID: 26940091
- PMCID: PMC5042660
- DOI: 10.1681/ASN.2015060621
Developmental Origins for Kidney Disease Due to Shroom3 Deficiency
Abstract
CKD is a significant health concern with an underlying genetic component. Multiple genome-wide association studies (GWASs) strongly associated CKD with the shroom family member 3 (SHROOM3) gene, which encodes an actin-associated protein important in epithelial morphogenesis. However, the role of SHROOM3 in kidney development and function is virtually unknown. Studies in zebrafish and rat showed that alterations in Shroom3 can result in glomerular dysfunction. Furthermore, human SHROOM3 variants can induce impaired kidney function in animal models. Here, we examined the temporal and spatial expression of Shroom3 in the mammalian kidney. We detected Shroom3 expression in the condensing mesenchyme, Bowman's capsule, and developing and mature podocytes in mice. Shroom3 null (Shroom3Gt/Gt) mice showed marked glomerular abnormalities, including cystic and collapsing/degenerating glomeruli, and marked disruptions in podocyte arrangement and morphology. These podocyte-specific abnormalities are associated with altered Rho-kinase/myosin II signaling and loss of apically distributed actin. Additionally, Shroom3 heterozygous (Shroom3Gt/+) mice showed developmental irregularities that manifested as adult-onset glomerulosclerosis and proteinuria. Taken together, our results establish the significance of Shroom3 in mammalian kidney development and progression of kidney disease. Specifically, Shroom3 maintains normal podocyte architecture in mice via modulation of the actomyosin network, which is essential for podocyte function. Furthermore, our findings strongly support the GWASs that suggest a role for SHROOM3 in human kidney disease.
Keywords: Shroom3; chronic kidney disease; kidney development; kidney disease; podocyte.
Copyright © 2016 by the American Society of Nephrology.
Figures




References
-
- Price PM, Hirschhorn K, Safirstein RL: Chronic kidney disease and GWAS: “The proper study of mankind is man.” Cell Metab 11: 451–452, 2010 - PubMed
-
- Modem V, Thompson M, Gollhofer D, Dhar AV, Quigley R: Timing of continuous renal replacement therapy and mortality in critically ill children*. Crit Care Med 42: 943–953, 2014 - PubMed
-
- Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, Feldman HI, Parekh RS, Kusek JW, Greene TH, Fink JC, Anderson AH, Choi MJ, Wright JT Jr., Lash JP, Freedman BI, Ojo A, Winkler CA, Raj DS, Kopp JB, He J, Jensvold NG, Tao K, Lipkowitz MS, Appel LJ AASK Study Investigators CRIC Study Investigators : APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med 369: 2183–2196, 2013 - PMC - PubMed
-
- Devuyst O, Knoers NV, Remuzzi G, Schaefer F Board of the Working Group for Inherited Kidney Diseases of the European Renal Association and European Dialysis and Transplant Association : Rare inherited kidney diseases: Challenges, opportunities, and perspectives. Lancet 383: 1844–1859, 2014 - PMC - PubMed
-
- Köttgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M, Yang Q, Gudnason V, Launer LJ, Harris TB, Smith AV, Arking DE, Astor BC, Boerwinkle E, Ehret GB, Ruczinski I, Scharpf RB, Chen YD, de Boer IH, Haritunians T, Lumley T, Sarnak M, Siscovick D, Benjamin EJ, Levy D, Upadhyay A, Aulchenko YS, Hofman A, Rivadeneira F, Uitterlinden AG, van Duijn CM, Chasman DI, Paré G, Ridker PM, Kao WH, Witteman JC, Coresh J, Shlipak MG, Fox CS: Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 41: 712–717, 2009 - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous