Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Feb 1;13(2):113-6.
doi: 10.7150/ijms.14112. eCollection 2016.

Exosomes Mediate the Intercellular Communication after Myocardial Infarction

Affiliations
Review

Exosomes Mediate the Intercellular Communication after Myocardial Infarction

Ming-Jie Yuan et al. Int J Med Sci. .

Abstract

The mechanisms of cardiac repair after myocardial infarction (MI) are complicated and not well-understood currently. It is known that exosomes are released from most cells, recognized as new candidates with important roles in intercellular and tissue-level communication. Cells can package proteins and RNA messages into exosome and secret to recipient cells, which regulate gene expression in recipient cells. The research on exosomes in cardiovascular disease is just emerging. It is well-known that exosomes from cardiomyocyte can transfect endothelial cells, stem cells, fibroblasts and smooth muscle cells to induce cellular changes. After myocardial infarction (MI), the exosomes play important roles in local and distant microcommunication. Nowadays, exosomal microRNAs transportation has been found to deliver signals to mediate cardiac repair after MI. However, the exosomes quality and quantities are variable under different pathological conditions. Therefore, we speculate that the monitoring of the quality and quantity of exosomes may serve as diagnosis and prognosis biomarkers of MI, and the study of exosomes will provide insights for the new therapeutics to cardiac remodeling after MI.

Keywords: exosomes, cardiac remodeling; microRNA; myocardial infarction..

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Similar articles

Cited by

References

    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M. et al. Heart Disease and Stroke Statistics-2015 Update A Report From the American Heart Association. Circulation. 2015;131:E29–E322. - PubMed
    1. Ailawadi S, Wang X, Gu H, Fan GC. Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta. 2015;1852:1–11. - PMC - PubMed
    1. Das S, Halushka MK. Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol. 2015;24:199–206. - PubMed
    1. Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol. 2015;81:2–10. - PubMed
    1. Sluijter JP, Verhage V, Deddens JC, van den Akker F, Doevendans PA. Microvesicles and exosomes for intracardiac communication. Cardiovasc Res. 2014;102:302–11. - PubMed

Publication types