Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 4;11(3):e0150704.
doi: 10.1371/journal.pone.0150704. eCollection 2016.

A Low-Cost Simulation Model for R-Wave Synchronized Atrial Pacing in Pediatric Patients with Postoperative Junctional Ectopic Tachycardia

Affiliations

A Low-Cost Simulation Model for R-Wave Synchronized Atrial Pacing in Pediatric Patients with Postoperative Junctional Ectopic Tachycardia

Andreas Entenmann et al. PLoS One. .

Abstract

Background: Postoperative junctional ectopic tachycardia (JET) occurs frequently after pediatric cardiac surgery. R-wave synchronized atrial (AVT) pacing is used to re-establish atrioventricular synchrony. AVT pacing is complex, with technical pitfalls. We sought to establish and to test a low-cost simulation model suitable for training and analysis in AVT pacing.

Methods: A simulation model was developed based on a JET simulator, a simulation doll, a cardiac monitor, and a pacemaker. A computer program simulated electrocardiograms. Ten experienced pediatric cardiologists tested the model. Their performance was analyzed using a testing protocol with 10 working steps.

Results: Four testers found the simulation model realistic; 6 found it very realistic. Nine claimed that the trial had improved their skills. All testers considered the model useful in teaching AVT pacing. The simulation test identified 5 working steps in which major mistakes in performance test may impede safe and effective AVT pacing and thus permitted specific training. The components of the model (exclusive monitor and pacemaker) cost less than $50. Assembly and training-session expenses were trivial.

Conclusions: A realistic, low-cost simulation model of AVT pacing is described. The model is suitable for teaching and analyzing AVT pacing technique.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Principles of AVT pacing.
(A) External pacing wires are switched at the pacemaker´s inputs. The pacemaker senses ventricular depolarization via the atrial channel and stimulates the atria before the next QRS complex, modified from [6]. (B) Original electrocardiogram during AVT pacing in a 3-month-old child with postoperative JET. A: atrial input, V: ventricular input, PM: external pacemaker, VS: ventricular sensing, AP: atrial pacing, AV: atrioventricular, PVARP: postventricular atrial refractory period.
Fig 2
Fig 2. The custom-made JET simulator.
JET rates are selected via a rotary switch in the middle of one face. Signals for an ECG monitor are provided at the lateral output sites. Output plugs at the top supply the input signal for the pacemaker. An on/off switch is located at the right side of the device. R: right, L: left, F: foot, N: neutral.
Fig 3
Fig 3. The simulation model.
The model is composed of the JET-Simulator, an ECG monitor, a simulation doll, and an external AVT capable pacemaker. The doll is fitted with atrial and ventricular external pacing wires, simulating an infant after cardiac surgery.
Fig 4
Fig 4. The MetaPost AP-VS-Visualizer.
A short software script utilizes the patient´s heart rate (JET simulator rate) and the AV delay as adjusted by the tester to calculate and graphically to display the interval between atrial pacing and sensing of the subsequent QRS complex. AP: atrial pacing, VS: ventricular sensing, AV: atrioventricular, bpm: beats per minute, ms: milliseconds, mV: millivolt.
Fig 5
Fig 5. Simulator testing.
Ten pediatric cardiologists were asked to establish AVT pacing. Ten working steps were assessed: ON, switching on the pacemaker; VDD, choosing the VDD mode; V-SENSE, adjusting ventricular sensing for maximal insensitivity; MTR, selecting the maximal tracking rate at a value 10–20 bpm above the patient´s heart rate; AV-DLY, setting the AV delay to the maximum allowed value; PVARP, adjusting the post ventricular atrial refractory period to 100 ms; RATE, selecting a basic stimulation rate clearly below the patient´s heart rate; R-WAVE, measuring the ventricular input signal; A-SENSE, selecting an atrial sensitivity 50% of the ventricular input signal; WIRES, connecting the pacing wires of the pacemaker. Three points indicate perfect, 2 points suboptimal performance, and 1 point a mistake that impairs safe or effective AVT pacing.

Similar articles

Cited by

References

    1. Tharakan JA, Sukulal K. Post cardiac surgery junctional ectopic tachycardia: A 'Hit and Run' tachyarrhythmia as yet unchecked. Ann Pediatr Cardiol. 2014;7: 25–28. 10.4103/0974-2069.126545 - DOI - PMC - PubMed
    1. Dodge-Khatami A, Miller OI, Anderson RH, Gil-Jaurena JM, Goldman AP, de Leval MR. Impact of junctional ectopic tachycardia on postoperative morbidity following repair of congenital heart defects. Eur J Cardiothorac Surg. 2002;21: 255–259. - PubMed
    1. Andreasen JB, Johnsen SP, Ravn HB. Junctional ectopic tachycardia after surgery for congenital heart disease in children. Intensive Care Med. 2008;34: 895–902. 10.1007/s00134-007-0987-2 - DOI - PubMed
    1. Mildh L, Hiippala A, Rautiainen P, Pettila V, Sairanen H, Happonen JM. Junctional ectopic tachycardia after surgery for congenital heart disease: incidence, risk factors and outcome. Eur J Cardiothorac Surg. 2011;39: 75–80. 10.1016/j.ejcts.2010.04.002 - DOI - PubMed
    1. Kovacikova L, Hakacova N, Dobos D, Skrak P, Zahorec M. Amiodarone as a first-line therapy for postoperative junctional ectopic tachycardia. Ann Thorac Surg. 2009;88: 616–622. 10.1016/j.athoracsur.2009.04.088 - DOI - PubMed