Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug;124(8):1155-65.
doi: 10.1289/ehp.1510529. Epub 2016 Mar 8.

An Informatics Approach to Evaluating Combined Chemical Exposures from Consumer Products: A Case Study of Asthma-Associated Chemicals and Potential Endocrine Disruptors

Affiliations

An Informatics Approach to Evaluating Combined Chemical Exposures from Consumer Products: A Case Study of Asthma-Associated Chemicals and Potential Endocrine Disruptors

Henry A Gabb et al. Environ Health Perspect. 2016 Aug.

Abstract

Background: Simultaneous or sequential exposure to multiple environmental stressors can affect chemical toxicity. Cumulative risk assessments consider multiple stressors but it is impractical to test every chemical combination to which people are exposed. New methods are needed to prioritize chemical combinations based on their prevalence and possible health impacts.

Objectives: We introduce an informatics approach that uses publicly available data to identify chemicals that co-occur in consumer products, which account for a significant proportion of overall chemical load.

Methods: Fifty-five asthma-associated and endocrine disrupting chemicals (target chemicals) were selected. A database of 38,975 distinct consumer products and 32,231 distinct ingredient names was created from online sources, and PubChem and the Unified Medical Language System were used to resolve synonymous ingredient names. Synonymous ingredient names are different names for the same chemical (e.g., vitamin E and tocopherol).

Results: Nearly one-third of the products (11,688 products, 30%) contained ≥ 1 target chemical and 5,229 products (13%) contained > 1. Of the 55 target chemicals, 31 (56%) appear in ≥ 1 product and 19 (35%) appear under more than one name. The most frequent three-way chemical combination (2-phenoxyethanol, methyl paraben, and ethyl paraben) appears in 1,059 products. Further work is needed to assess combined chemical exposures related to the use of multiple products.

Conclusions: The informatics approach increased the number of products considered in a traditional analysis by two orders of magnitude, but missing/incomplete product labels can limit the effectiveness of this approach. Such an approach must resolve synonymy to ensure that chemicals of interest are not missed. Commonly occurring chemical combinations can be used to prioritize cumulative toxicology risk assessments.

Citation: Gabb HA, Blake C. 2016. An informatics approach to evaluating combined chemical exposures from consumer products: a case study of asthma-associated chemicals and potential endocrine disruptors. Environ Health Perspect 124:1155-1165; http://dx.doi.org/10.1289/ehp.1510529.

PubMed Disclaimer

Conflict of interest statement

The authors declare they have no actual or potential competing financial interests.

Figures

Figure 1
Figure 1
Example of homonymy in chemical naming. Chemical homonymy occurs when the same name can refer to different chemicals. Terpineol, its stereoisomers, and its sodium salt each have a different CID in PubChem but share common synonyms. Therefore, the same chemical name can match more than one PubChem CID. These images were taken from PubChem ( Kim et al. 2016).
Figure 2
Figure 2
Of the 38,975 consumer products in our sample, 11,688 (30%) contain at least one of the potentially harmful chemicals identified in Dodson et al. (2012): 6,459 contain only one target chemical, 2,564 contain two, 1,539 contain three, etc. Of the 11,688 products that contain a target chemical, 6,459 (55%) contain only one, while 5,229 (45%) contain more than one.
Figure 3
Figure 3
Heat map showing chemical prevalence by product category. Broad and specific consumer product categories are shown along the horizontal axis. Chemical class is shown on the left vertical axis and specific chemical ingredients are shown on the right vertical axis. White indicates that a chemical was not found in a product category. Yellow indicates that > 0–10% of the products in the category contain the chemical. Orange indicates that > 10–20% of the products contain the chemical. Dark red indicates that > 20–30% of the products contain the chemical. Black indicates that > 30–40% of the products contain the chemical.

Comment in

Similar articles

Cited by

References

    1. Anderson SE, Franko J, Kashon ML, Anderson KL, Hubbs AF, Lukomska E, et al. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma. Toxicol Sci. 2013;132(1):96–106. - PMC - PubMed
    1. APUA (Alliance for the Prudent Use of Antibiotics) Boston, MA: Tufts University; 2011. Triclosan: White Paper Prepared by the Alliance for the Prudent Use of Antibiotics. Available: http://www.tufts.edu/med/apua/consumers/personal_home_21_4240495089.pdf [accessed 15 February 2016]
    1. Bolton EE, Wang Y, Thiessen PA, Bryant SH. PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem. 2008;4:217–240.
    1. Bornehag CG, Nanberg E. Phthalate exposure and asthma in children. Int J Androl. 2010;33(2):333–345. - PubMed
    1. Bornehag CG, Sundell J, Weschler CJ, Sigsgaard T, Lundgren B, Hasselgren M, et al. 2004. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case–control study. Environ Health Perspect 112 1393 1397, doi:10.1289/ehp.7187 - DOI - PMC - PubMed

Publication types

LinkOut - more resources