Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 28:228:132-140.
doi: 10.1016/j.jconrel.2016.03.005. Epub 2016 Mar 6.

Polymer-coated pH-responsive high-density lipoproteins

Affiliations

Polymer-coated pH-responsive high-density lipoproteins

Hyungjin Kim et al. J Control Release. .

Abstract

Intracellular drug delivery by nanoparticles is often hampered by their endosomal entrapment followed by their degradation in the lysosomal compartment and/or exocytosis. Here, we show that internalization and endosomal escape of cargoes in a cationized natural nanocarrier, high-density lipoprotein (HDL), can be controlled in a pH-dependent manner through stable complexation with a membranolytic anionic block polymer. A genetically and chemically cationized form of HDL (catHDL) is prepared for the first time by both genetic fusion with YGRKKRRQRRR peptide and incorporation of 1,2-dioleoyloxy-3-(trimethylammonium)propane. Upon addition of poly(ethylene glycol)-block-poly(propyl methacrylate-co-methacrylic acid) (PA), catHDL yields inhibition of internalization at neutral pH and its subsequent recovery at mildly acidic pH. catHDL forms a stable discoidal-shape complex with PA (catHDL/PA) (ca. 50 nm in diameter), even in the presence of serum. Significant enhancement of endosomal escape of a catHDL component is observed after a 1-h treatment of human cancer cells with catHDL/PA. Doxorubicin and curcumin, fluorescent anti-cancer drugs, encapsulated into catHDL/PA are also translocated outside of endosomes, compared with that into catHDL, and their cytotoxicities are enhanced inside the cells. These data suggest that catHDL/PA may have a potential benefit to improve the cellular delivery and endosomal escape of therapeutics under mildly acidic conditions such as in tumor tissues.

Keywords: Anticancer drug delivery; Endosomal escape; Internalization; Membranolytic polymer; Mildly acidic pH.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources