Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir
- PMID: 26965360
- PMCID: PMC4786803
- DOI: 10.1038/srep22960
Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir
Abstract
Microbiology of a hypersaline oil reservoir located in Central Africa was investigated with molecular and culture methods applied to preserved core samples. Here we show that the community structure was partially acquired during sedimentation, as many prokaryotic 16S rRNA gene sequences retrieved from the extracted DNA are phylogenetically related to actual Archaea inhabiting surface evaporitic environments, similar to the Cretaceous sediment paleoenvironment. Results are discussed in term of microorganisms and/or DNA preservation in such hypersaline and Mg-rich solutions. High salt concentrations together with anaerobic conditions could have preserved microbial/molecular diversity originating from the ancient sediment basin wherein organic matter was deposited.
Figures
Similar articles
-
Microbial communities associated with acetate-rich gas-petroleum reservoir surface facilities.Biosci Biotechnol Biochem. 2011;75(9):1835-7. doi: 10.1271/bbb.110243. Epub 2011 Sep 7. Biosci Biotechnol Biochem. 2011. PMID: 21897018
-
Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey.FEMS Microbiol Ecol. 2008 Sep;65(3):474-83. doi: 10.1111/j.1574-6941.2008.00510.x. Epub 2008 Jun 5. FEMS Microbiol Ecol. 2008. PMID: 18537839
-
Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales.Extremophiles. 2017 Jan;21(1):211-229. doi: 10.1007/s00792-016-0897-8. Epub 2016 Dec 3. Extremophiles. 2017. PMID: 27915388
-
Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic.ISME J. 2010 Oct;4(10):1326-39. doi: 10.1038/ismej.2010.57. Epub 2010 May 6. ISME J. 2010. PMID: 20445635
-
Reservoir Souring - Latest developments for application and mitigation.J Biotechnol. 2017 Aug 20;256:57-67. doi: 10.1016/j.jbiotec.2017.04.003. Epub 2017 Apr 8. J Biotechnol. 2017. PMID: 28400136 Review.
Cited by
-
Effects of iron nanoparticles on iron-corroding bacteria.3 Biotech. 2017 Dec;7(6):385. doi: 10.1007/s13205-017-1018-9. Epub 2017 Nov 6. 3 Biotech. 2017. PMID: 29201585 Free PMC article.
-
Abundance and diversity of prokaryotes in ephemeral hypersaline lake Chott El Jerid using Illumina Miseq sequencing, DGGE and qPCR assays.Extremophiles. 2018 Sep;22(5):811-823. doi: 10.1007/s00792-018-1040-9. Epub 2018 Jul 16. Extremophiles. 2018. PMID: 30014241
-
In Situ Growth of Halophilic Bacteria in Saline Fracture Fluids from 2.4 km below Surface in the Deep Canadian Shield.Life (Basel). 2020 Nov 24;10(12):307. doi: 10.3390/life10120307. Life (Basel). 2020. PMID: 33255232 Free PMC article.
-
Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai-Tibet Plateau.Sci Rep. 2022 Mar 1;12(1):3365. doi: 10.1038/s41598-022-07311-3. Sci Rep. 2022. PMID: 35233041 Free PMC article.
-
Metagenomic Investigation of a Low Diversity, High Salinity Offshore Oil Reservoir.Microorganisms. 2021 Oct 31;9(11):2266. doi: 10.3390/microorganisms9112266. Microorganisms. 2021. PMID: 34835392 Free PMC article.
References
-
- Head I. M., Jones D. M. & Larter S. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352 (2003). - PubMed
-
- Matter J. M. & Kelemen P. B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience 2, 837–841 (2009).
-
- Bastin E. S., Greer F. E., Merritt C. A. & Moulton G. The presence of sulphate reducing bacteria in oil fields waters. Science 63, 21–24 (1926). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources