Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May;36(5):817-24.
doi: 10.1161/ATVBAHA.115.307049. Epub 2016 Mar 10.

Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection

Affiliations

Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection

Jonas W Brinck et al. Arterioscler Thromb Vasc Biol. 2016 May.

Abstract

Objective: The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect.

Approach and results: We used in vitro (cardiomyocytes) and ex vivo (whole heart) models subjected to oxidative stress together with HDL isolated from diabetic patients and nondiabetic HDL glycated in vitro (methylglyoxal). Diabetic and in vitro glycated HDL were less effective (P<0.05) than control HDL in protecting from oxidative stress. Protection was significantly, inversely correlated with the degree of in vitro glycation (P<0.001) and the levels of hemoglobin A1c in diabetic patients (P<0.007). The ability to activate protective, intracellular survival pathways involving Akt, Stat3, and Erk1/2 was significantly reduced (P<0.05) using glycated HDL. Glycation reduced the sphingosine-1-phosphate (S1P) content of HDL, whereas the S1P concentrations of diabetic HDL were inversely correlated with hemoglobin A1c (P<0.005). The S1P contents of in vitro glycated and diabetic HDL were significantly, positively correlated (both <0.01) with cardiomyocyte survival during oxidative stress. Adding S1P to diabetic HDL increased its S1P content and restored its cardioprotective function.

Conclusions: Our data demonstrate that glycation can reduce the S1P content of HDL, leading to increased cardiomyocyte cell death because of less effective activation of intracellular survival pathways. It has important implications for the functionality of HDL in diabetes mellitus because HDL-S1P has several beneficial effects on the vasculature.

Keywords: AGE; HDL; cardiomyocytes; glycation; ischemia reperfusion injury; sphingosine-1-phosphate; type 2 diabetes mellitus.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources