Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;126(2):347-353.
doi: 10.3171/2015.12.JNS152033. Epub 2016 Mar 11.

Incidence and predictors of dural venous sinus pressure gradient in idiopathic intracranial hypertension and non-idiopathic intracranial hypertension headache patients: results from 164 cerebral venograms

Affiliations

Incidence and predictors of dural venous sinus pressure gradient in idiopathic intracranial hypertension and non-idiopathic intracranial hypertension headache patients: results from 164 cerebral venograms

Michael R Levitt et al. J Neurosurg. 2017 Feb.

Abstract

OBJECTIVE Cerebral venous pressure gradient (CVPG) from dural venous sinus stenosis is implicated in headache syndromes such as idiopathic intracranial hypertension (IIH). The incidence of CVPG in headache patients has not been reported. METHODS The authors reviewed all cerebral venograms with manometry performed for headache between January 2008 and May 2015. Patient demographics, headache etiology, intracranial pressure (ICP) measurements, and radiographic and manometric results were recorded. CVPG was defined as a difference ≥ 8 mm Hg by venographic manometry. RESULTS One hundred sixty-four venograms were performed in 155 patients. There were no procedural complications. Ninety-six procedures (58.5%) were for patients with IIH. The overall incidence of CVPG was 25.6% (42 of 164 procedures): 35.4% (34 of 96 procedures) in IIH patients and 11.8% (8 of 68 procedures) in non-IIH patients. Sixty procedures (36.6%) were performed in patients with preexisting shunts. Seventy-seven patients (49.7%) had procedures preceded by an ICP measurement within 4 weeks of venography, and in 66 (85.7%) of these patients, the ICP had been found to be elevated. CVPG was seen in 8.3% (n = 5) of the procedures in the 60 patients with a preexisting shunt and in 0% (n = 0) of the 11 procedures in the 77 patients with normal ICP (p < 0.001 for both). Noninvasive imaging (MR venography, CT venography) was assessed prior to venography in 112 (68.3%) of 164 cases, and dural venous sinus abnormalities were demonstrated in 73 (65.2%) of these cases; there was a trend toward CVPG (p = 0.07). Multivariate analysis demonstrated an increased likelihood of CVPG in patients with IIH (OR 4.97, 95% CI 1.71-14.47) and a decreased likelihood in patients with a preexisting shunt (OR 0.09, 95% CI 0.02-0.44). CONCLUSIONS CVPG is uncommon in IIH patients, rare in those with preexisting shunts, and absent in those with normal ICP.

Keywords: BMI = body mass index; CTV = CT venography; CVPG = cerebral venous pressure gradient; ICP = intracranial pressure; IIH = idiopathic intracranial hypertension; MRV = MR venography; NPV = negative predictive value; PPV = positive predictive value; benign intracranial hypertension; headache; idiopathic intracranial hypertension; interventional neurosurgery; manometry; pseudotumor cerebri; venography.

PubMed Disclaimer

LinkOut - more resources