Role of MiR-126a-3p in Endothelial Injury in Endotoxic Mice
- PMID: 26968021
- PMCID: PMC4949098
- DOI: 10.1097/CCM.0000000000001629
Role of MiR-126a-3p in Endothelial Injury in Endotoxic Mice
Abstract
Objective: Sepsis poses a serious global health problem with an overall mortality rate of 30%, in which the vascular injury is a major contributor. The study is to determine the expression profile of micro-RNAs in endotoxic vascular walls and their potential roles in sepsis-related vascular injury.
Design: Prospective randomized study.
Setting: Laboratory investigation.
Subjects: Male C57BL/6 mice, average weight 26.5 ± 1.8 g.
Interventions: Endotoxemia was induced in mice via lipopolysaccharide injection (20 mg/kg, intraperitoneal) (Sigma, St. Louis, MO). The control mice were injected with the same amount of saline (500 μL, intraperitoneal). In a subgroup of mice, a high dose of lipopolysaccharide (30 mg/kg, intraperitoneal) was applied to induce endotoxin-related death.
Measurements and main results: The mi-RNA expression profiles in aortas from lipopolysaccharide-induced endotoxic mice were determined. The result demonstrated that some micro-RNAs were aberrantly expressed in endotoxic mouse arteries. Among them, the endothelial cell-enriched/endothelial cell-specific miR-126a-3p was significantly down-regulated in endotoxic mouse arteries, septic human vessels, as well as vascular endothelial cells isolated from endotoxic mice or treated with lipopolysaccharide. The down-regulation of miR-126a-3p occurred at transcriptional level via the decreased expression of Krüppel-like factor 2, which could be inhibited by Krüppel-like factor 2 over-expression via adenovirus expressing Krüppel-like factor 2. The down-regulation of miR-126a-3p in endothelial cells resulted in the increased apoptosis, and decreased proliferation and migration, which were inhibited by miR-126a-3p mimics. In vivo, over-expression of miR-126a-3p via lentivirus attenuated endotoxemia-induced injuries on endothelial function and vascular permeability. We found that SPRED1 and VCAM-1 were two direct target genes of miR-126a-3p related to miR-126a-3p-mediated effects in endotoxemia. Finally, the survival rate of endotoxic mice was significantly increased by the over-expression of miR-126a-3p.
Conclusions: The results suggest that vascular micro-RNAs such as miR-126a-3p may represent novel mechanisms and new therapeutic targets for endotoxemia-induced vascular injury and endotoxic mortality.
Figures







References
-
- Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R. Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228. - PMC - PubMed
-
- Cinel I, Dellinger RP. Advances in pathogenesis and management of sepsis. Curr Opin Infect Dis. 2007;20:345–52. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources