Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 12:17:224.
doi: 10.1186/s12864-016-2538-0.

Detailed phenotyping identifies genes with pleiotropic effects on body composition

Affiliations

Detailed phenotyping identifies genes with pleiotropic effects on body composition

Sunduimijid Bolormaa et al. BMC Genomics. .

Abstract

Background: Genetic variation in both the composition and distribution of fat and muscle in the body is important to human health as well as the healthiness and value of meat from cattle and sheep. Here we use detailed phenotyping and a multi-trait approach to identify genes explaining variation in body composition traits.

Results: A multi-trait genome wide association analysis of 56 carcass composition traits measured on 10,613 sheep with imputed and real genotypes on 510,174 SNPs was performed. We clustered 71 significant SNPs into five groups based on their pleiotropic effects across the 56 traits. Among these 71 significant SNPs, one group of 11 SNPs affected the fatty acid profile of the muscle and were close to 8 genes involved in fatty acid or triglyceride synthesis. Another group of 23 SNPs had an effect on mature size, based on their pattern of effects across traits, but the genes near this group of SNPs did not share any obvious function. Many of the likely candidate genes near SNPs with significant pleiotropic effects on the 56 traits are involved in intra-cellular signalling pathways. Among the significant SNPs were some with a convincing candidate gene due to the function of the gene (e.g. glycogen synthase affecting glycogen concentration) or because the same gene was associated with similar traits in other species.

Conclusions: Using a multi-trait analysis increased the power to detect associations between SNP and body composition traits compared with the single trait analyses. Detailed phenotypic information helped to identify a convincing candidate in some cases as did information from other species.

Keywords: Body composition; GWAS; Genes; Human; Meta-analysis; Multi-trait; Pleiotropy; Sheep.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Pie chart showing percentages of total of 10,613 animals in each of sheep populations
Fig. 2
Fig. 2
Quantile-quantile plot of P-values from single SNP genome wide association study of HGRFAT (darkorange), CEMA (red), SHEARF1 (skyblue), and FA_C22_5n3 (magenta), and from multi-trait analysis (olivegreen1). Observed and expected P-values would fall on the light blue line if there was no association. The top horizontal line is P < 0.0001, middle horizontal line is P < 0.001, and the bottom horizontal line is P < 0.05
Fig. 3
Fig. 3
The Manhattan plot showing the –log10 (P-values) of SNPs of the multi-trait test of the whole genome (except the X chromosome) before (a) and after (b) fitting 23 lead SNPs in the model
Fig. 4
Fig. 4
The –log10 (P-values) of single SNP regressions for 6 traits and multi-trait chi-squared statistic on a region of OAR 11
Fig. 5
Fig. 5
Correlation matrix between the 23 lead SNPs calculated from SNP effects on 56 traits
Fig. 6
Fig. 6
Dendrogram drawn based on correlation matrix between the effects of the lead SNPs and their linear index SNPs within each group: a Group 1 SNPs (chromosome and position in base pair) along with their annotated gene names; b Group 2 SNPs; and c Group 3 SNPs. Lead SNPs within each group are highlighted with blue stars; Genes (in brackets) are the alternative most likely putative candidates within the regions
Fig. 7
Fig. 7
The –log10 (P-values) of SNP effects from the multi-trait test results for OAR18_64.5 Mb, where not all genes in this region are shown: The lead SNP is shown by a purple diamond in each plot (labelled with chromosome and position, Mb) and the LD between this variant and all others is colour coded

Similar articles

Cited by

References

    1. Hemani G, Yang J, Vinkhuyzen A, Powell JE, Willemsen G, Hottenga JJ, Abdellaoui A, Mangino M, Valdes AM, Medland SE, et al. Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs. Am J Hum Genet. 2013;93:865–875. doi: 10.1016/j.ajhg.2013.10.005. - DOI - PMC - PubMed
    1. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. doi: 10.1038/nature14177. - DOI - PMC - PubMed
    1. Robinson DL, Oddy VH. Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livest Prod Sci. 2004;90:255–270. doi: 10.1016/j.livprodsci.2004.06.011. - DOI
    1. Mortimer SI, van der Werf JHJ, Jacob RH, Hopkins DL, Pannier L, Pearce KL, et al. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci. 2014;96:1016–1024. doi: 10.1016/j.meatsci.2013.09.007. - DOI - PubMed
    1. Bolormaa S, Pryce JE, Kemper K, Savin K, Hayes BJ, Barendse W, et al. Accuracy of prediction of genomic breeding values for residual feed intake, carcass and meat quality traits in Bos taurus, Bos indicus and composite beef cattle. J Anim Sci. 2013;91:3088–3104. doi: 10.2527/jas.2012-5827. - DOI - PubMed

Publication types