Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 22;60(5):3227-31.
doi: 10.1128/AAC.02969-15. Print 2016 May.

Evaluation of the In Vitro Activity of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Meropenem-Resistant Pseudomonas aeruginosa Isolates

Affiliations

Evaluation of the In Vitro Activity of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Meropenem-Resistant Pseudomonas aeruginosa Isolates

Deanna J Buehrle et al. Antimicrob Agents Chemother. .

Abstract

We compared ceftazidime-avibactam, ceftolozane-tazobactam, ceftazidime, cefepime, and piperacillin-tazobactam MICs for 38 meropenem-resistant Pseudomonas aeruginosa isolates. No isolates harbored carbapenemases; 74% were oprD mutants. Ceftazidime-avibactam and ceftolozane-tazobactam were active against 92% of the isolates, including 80% that were resistant to all three β-lactams. Forty-three percent of ceftazidime-avibactam-susceptible isolates and 6% of ceftolozane-tazobactam-susceptible isolates exhibited MICs at the respective breakpoints. Ceftolozane-tazobactam and ceftazidime-avibactam are therapeutic options for meropenem-resistant P. aeruginosa infections that should be used judiciously to preserve activity.

PubMed Disclaimer

Figures

FIG 1
FIG 1
Correlations between ceftazidime-avibactam (A) and ceftolozane-tazobactam (B) MICs against meropenem-resistant P. aeruginosa isolates and the number of inactive β-lactam agents. Horizontal lines intersecting the y axis, FDA-approved susceptibility breakpoints. The median MICs for isolates that were resistant to 0, 1, 2, or 3 β-lactam agents were compared.

References

    1. Zilberberg MD, Shorr AF. 2013. Prevalence of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J Hosp Med 8:559–563. doi:10.1002/jhm.2080. - DOI - PubMed
    1. Rodriguez-Martinez JM, Poirel L, Nordmann P. 2009. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:1766–1771. doi:10.1128/AAC.01410-08. - DOI - PMC - PubMed
    1. Winkler ML, Papp-Wallace KM, Hujer AM, Domitrovic TN, Hujer KM, Hurless KN, Tuohy M, Hall G, Bonomo RA. 2015. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 59:1020–1029. doi:10.1128/AAC.04238-14. - DOI - PMC - PubMed
    1. Castanheira M, Mills JC, Farrell DJ, Jones RN. 2014. Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother 58:6844–6850. doi:10.1128/AAC.03681-14. - DOI - PMC - PubMed
    1. Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN. 2014. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–11 in 14 European and Mediterranean countries. J Antimicrob Chemother 69:1804–1814. doi:10.1093/jac/dku048. - DOI - PubMed

MeSH terms

LinkOut - more resources