Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 15;315(11):1141-8.
doi: 10.1001/jama.2016.1952.

Evolution of Reporting P Values in the Biomedical Literature, 1990-2015

Affiliations

Evolution of Reporting P Values in the Biomedical Literature, 1990-2015

David Chavalarias et al. JAMA. .

Abstract

Importance: The use and misuse of P values has generated extensive debates.

Objective: To evaluate in large scale the P values reported in the abstracts and full text of biomedical research articles over the past 25 years and determine how frequently statistical information is presented in ways other than P values.

Design: Automated text-mining analysis was performed to extract data on P values reported in 12,821,790 MEDLINE abstracts and in 843,884 abstracts and full-text articles in PubMed Central (PMC) from 1990 to 2015. Reporting of P values in 151 English-language core clinical journals and specific article types as classified by PubMed also was evaluated. A random sample of 1000 MEDLINE abstracts was manually assessed for reporting of P values and other types of statistical information; of those abstracts reporting empirical data, 100 articles were also assessed in full text.

Main outcomes and measures: P values reported.

Results: Text mining identified 4,572,043 P values in 1,608,736 MEDLINE abstracts and 3,438,299 P values in 385,393 PMC full-text articles. Reporting of P values in abstracts increased from 7.3% in 1990 to 15.6% in 2014. In 2014, P values were reported in 33.0% of abstracts from the 151 core clinical journals (n = 29,725 abstracts), 35.7% of meta-analyses (n = 5620), 38.9% of clinical trials (n = 4624), 54.8% of randomized controlled trials (n = 13,544), and 2.4% of reviews (n = 71,529). The distribution of reported P values in abstracts and in full text showed strong clustering at P values of .05 and of .001 or smaller. Over time, the "best" (most statistically significant) reported P values were modestly smaller and the "worst" (least statistically significant) reported P values became modestly less significant. Among the MEDLINE abstracts and PMC full-text articles with P values, 96% reported at least 1 P value of .05 or lower, with the proportion remaining steady over time in PMC full-text articles. In 1000 abstracts that were manually reviewed, 796 were from articles reporting empirical data; P values were reported in 15.7% (125/796 [95% CI, 13.2%-18.4%]) of abstracts, confidence intervals in 2.3% (18/796 [95% CI, 1.3%-3.6%]), Bayes factors in 0% (0/796 [95% CI, 0%-0.5%]), effect sizes in 13.9% (111/796 [95% CI, 11.6%-16.5%]), other information that could lead to estimation of P values in 12.4% (99/796 [95% CI, 10.2%-14.9%]), and qualitative statements about significance in 18.1% (181/1000 [95% CI, 15.8%-20.6%]); only 1.8% (14/796 [95% CI, 1.0%-2.9%]) of abstracts reported at least 1 effect size and at least 1 confidence interval. Among 99 manually extracted full-text articles with data, 55 reported P values, 4 presented confidence intervals for all reported effect sizes, none used Bayesian methods, 1 used false-discovery rates, 3 used sample size/power calculations, and 5 specified the primary outcome.

Conclusions and relevance: In this analysis of P values reported in MEDLINE abstracts and in PMC articles from 1990-2015, more MEDLINE abstracts and articles reported P values over time, almost all abstracts and articles with P values reported statistically significant results, and, in a subgroup analysis, few articles included confidence intervals, Bayes factors, or effect sizes. Rather than reporting isolated P values, articles should include effect sizes and uncertainty metrics.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms