Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;28(4):170-9.
doi: 10.3109/08958378.2016.1148088.

Morning NO2 exposure sensitizes hypertensive rats to the cardiovascular effects of same day O3 exposure in the afternoon

Affiliations

Morning NO2 exposure sensitizes hypertensive rats to the cardiovascular effects of same day O3 exposure in the afternoon

Aimen K Farraj et al. Inhal Toxicol. 2016.

Abstract

Context: Within urban air sheds, specific ambient air pollutants typically peak at predictable times throughout the day. For example, in environments dominated by mobile sources, peak nitrogen dioxide (NO2) levels coincide with morning and afternoon rush hours, while peak levels of ozone (O3), occur in the afternoon.

Objective: Given that exposure to a single pollutant might sensitize the cardiopulmonary system to the effects of a subsequent exposure to a second pollutant, we hypothesized that a morning exposure to NO2 will exaggerate the cardiovascular effects of an afternoon O3 exposure in rats.

Materials and methods: Rats were divided into four groups that were each exposed for 3 h in the morning (m) and 3 h in the afternoon (a) on the same day: (1) m-Air/a-Air, (2) m-Air/a-O3 (0.3 ppm), (3) m-NO2 (0.5 ppm)/a-Air and (4) m-NO2/a-O3. Implanted telemetry devices recorded blood pressure and electrocardiographic data. Sensitivity to the arrhythmogenic agent aconitine was measured in a separate cohort.

Results: Only m-NO2/a-O3-exposed rats had significant changes in electrophysiological, mechanical and autonomic parameters. These included decreased heart rate and increased PR and QTc intervals and increased heart rate variability, suggesting increased parasympathetic tone. In addition, only m-NO2/a-O3 exposure decreased systolic and diastolic blood pressures and increased pulse pressure and QA interval, suggesting decreased cardiac contractility.

Discussion and conclusion: The findings indicate that initial exposure to NO2 sensitized rats to the cardiovascular effects of O3 and may provide insight into the epidemiological data linking adverse cardiovascular outcomes with exposures to low concentrations of O3.

Keywords: Air pollution, blood pressure; cardiovascular; electrocardiogram; nitrogen dioxide; ozone; sequential exposure.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources