Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 17;11(3):e0150913.
doi: 10.1371/journal.pone.0150913. eCollection 2016.

Raphanus sativus cv. Sango Sprout Juice Decreases Diet-Induced Obesity in Sprague Dawley Rats and Ameliorates Related Disorders

Affiliations

Raphanus sativus cv. Sango Sprout Juice Decreases Diet-Induced Obesity in Sprague Dawley Rats and Ameliorates Related Disorders

Fabio Vivarelli et al. PLoS One. .

Abstract

Background: Obesity is recognized as a leading global health problem, correlated with an increased risk for several chronic diseases. One strategy for weight control management includes the use of vegetables rich in bioactive compounds to counteract weight gain, improve the antioxidant status and stimulate lipid catabolism.

Aim of the study: The aim of this study was to investigate the role of Raphanus sativus Sango sprout juice (SSJ), a Brassica extraordinarily rich in anthocyanins (AC) and isothiocyanates (ITCs), in a non-genetic model of obesity (high fat diet-HFD induced).

Methods: Control groups were fed with HFD or regular diet (RD). After a 10-week period, animals were assigned to experimental units and treated by gavage for 28 days as follows: HFD and RD control groups (rats fed HFD or RD and treated with vehicle only) and HFD-treated groups (rats fed HFD and treated with 15, 75 or 150 mg/kg b.w. of SSJ). Body weight and food consumption were recorded and serum lipid profile was measured (total cholesterol, triglycerides, and non-esterified fatty acids). Hepatic phase-I, phase-II as well as antioxidant enzymatic activities were assessed.

Results: SSJ lowered total cholesterol level, food intake and liver weight compared with HFD rodents. SSJ at medium dose proved effective in reducing body-weight (~19 g reduction). SSJ was effective in up-regulating the antioxidant enzymes catalase,

Nad(p)h: quinone reductase, oxidised glutathione reductase and superoxide dismutase, which reached or exceeded RD levels, as well as the phase II metabolic enzyme UDP-glucuronosyl transferase (up to about 43%). HFD up-regulated almost every cytochrome P450 isoform tested, and a mild down-regulation to baseline was observed after SSJ intervention.

Conclusion: This work reveals, for the first time, the antioxidant, hypolipidemic and antiobesity potential of SSJ, suggesting its use as an efficient new functional food/nutraceutical product.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Body weight gain/loss trend of male rats with obesity induced by high fat-diet (HFD) during the Sango sprout juice (SSJ) intervention period.
Animals were treated as follows. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with vehicle. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 15 mg/kg b.w. SSJ. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 75 mg/kg b.w. SSJ. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 150 mg/kg b.w. SSJ. Values are mean ± standard error of the mean (S.E.M.) *P<0.05; **P<0.01 (two-tailed unpaired t-test).
Fig 2
Fig 2. Effects of Sango sprout juice (SSJ) on liver weight of male rats with obesity induced by high fat-diet (HFD) and treated as follows.
Rats fed RD and treated by gavage daily for twenty-eight consecutive days with vehicle. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with vehicle. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 15 mg/kg b.w. SSJ. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 75 mg/kg b.w. SSJ. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 150 mg/kg b.w. SSJ. The bars show mean values ± standard error of the mean (S.E.M.) of seven measurements performed on seven rat samples for each studied group. Mean values were significantly different compared with the HFD group (two-tailed unpaired t-test): *P<0.05, **P<0.01. Mean values were significantly different compared with the RD group (two-tailed unpaired t-test): P<0.05, ††P<0.01.
Fig 3
Fig 3. Representative macroscopic pictures of the liver from different experimental groups.
A: Rats fed RD and treated by gavage daily for twenty-eight consecutive days with vehicle (RD). B: Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with vehicle (HFD). C: Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 15 mg/kg b.w. SSJ (HFD+15 mg/kg b.w. SSJ). D: Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 75 mg/kg b.w. SSJ (HFD+75 mg/kg b.w. SSJ). E: Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 150 mg/kg b.w. SSJ (HFD+150 mg/kg b.w. SSJ).
Fig 4
Fig 4. Effects of Sango sprout juice (SSJ) on cholesterol in the serum of male rats with obesity induced by high fat-diet (HFD).
Animals were treated as follows. Rats fed RD and treated by gavage daily for twenty-eight consecutive days with vehicle. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with vehicle. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 15 mg/kg b.w. SSJ. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 75 mg/kg b.w. SSJ. Rats fed HFD and treated by gavage daily for twenty-eight consecutive days with 150 mg/kg b.w. SSJ. The bars show mean values ± standard error of the mean (S.E.M.) of seven measurements performed on seven rat samples for each studied group. Mean values were significantly different compared with the HFD group (two-tailed unpaired t-test): *P<0.05, **P<0.01. Mean values were significantly different compared with the RD group (two-tailed unpaired t-test): P<0.05, ††P<0.01.

References

    1. World Health Organization Obesity: preventing and managing the global epidemic-report of a WHO consultation on obesity Geneva: WHO; 1998. - PubMed
    1. Tsai AG, Abbo ED, Ogden LG. The time burden of overweight and obesity in primary care. BMC Health Serv Res 2011;11: 191 10.1186/1472-6963-11-191 - DOI - PMC - PubMed
    1. Fontaine KR, McCubrey R, Mehta T, Pajewski NM, Keith SW, Bangalore SS, et al. Body mass index and mortality rate among Hispanic adults: a pooled analysis of multiple epidemiologic data sets. Int J Obes (Lond) 2012;36: 1121–1126. - PMC - PubMed
    1. Singla P, Bardoloi A, Parkash AA. Metabolic effects of obesity: A review. World J Diabetes 2010;1: 76–88. 10.4239/wjd.v1.i3.76 - DOI - PMC - PubMed
    1. Marinou K, Tousoulis D, Antonopoulos AS Stefanadi E, Stefanadis C. Obesity and cardiovascular disease: from pathophysiology to risk stratification. Int J Cardiol 2012;138: 3–8. - PubMed

Publication types