Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun;37(6):579-97.
doi: 10.1002/humu.22987. Epub 2016 Apr 15.

Variation Interpretation Predictors: Principles, Types, Performance, and Choice

Affiliations
Review

Variation Interpretation Predictors: Principles, Types, Performance, and Choice

Abhishek Niroula et al. Hum Mutat. 2016 Jun.

Abstract

Next-generation sequencing methods have revolutionized the speed of generating variation information. Sequence data have a plethora of applications and will increasingly be used for disease diagnosis. Interpretation of the identified variants is usually not possible with experimental methods. This has caused a bottleneck that many computational methods aim at addressing. Fast and efficient methods for explaining the significance and mechanisms of detected variants are required for efficient precision/personalized medicine. Computational prediction methods have been developed in three areas to address the issue. There are generic tolerance (pathogenicity) predictors for filtering harmful variants. Gene/protein/disease-specific tools are available for some applications. Mechanism and effect-specific computer programs aim at explaining the consequences of variations. Here, we discuss the different types of predictors and their applications. We review available variation databases and prediction methods useful for variation interpretation. We discuss how the performance of methods is assessed and summarize existing assessment studies. A brief introduction is provided to the principles of the methods developed for variation interpretation as well as guidelines for how to choose the optimal tools and where the field is heading in the future.

Keywords: computational tools; mutation effect prediction; prediction methods; variation effect; variation interpretation; variation prediction.

PubMed Disclaimer

LinkOut - more resources