Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 18:15:175.
doi: 10.1186/s12936-016-1230-9.

Low prevalence of Plasmodium and absence of malaria transmission in Conakry, Guinea: prospects for elimination

Affiliations

Low prevalence of Plasmodium and absence of malaria transmission in Conakry, Guinea: prospects for elimination

Bernard L Kouassi et al. Malar J. .

Abstract

Background: Over the past 15 years, mortality and morbidity due to malaria have been reduced substantially in sub-Saharan Africa and local elimination has been achieved in some settings. This study addresses the bio-ecology of larval and adult stages of malaria vectors, Plasmodium infection in Anopheles gambiae s.l. in the city of Conakry, Guinea, and discusses the prospect for malaria elimination.

Methods: Water bodies were prospected to identify potential mosquito breeding sites for 6 days each in the dry season (January 2013) and in the rainy season (August 2013), using the dipping method. Adult mosquitoes were collected in 15 communities in the five districts of Conakry using exit traps and indoor spraying catches over a 1-year period (November 2012 to October 2013). Molecular approaches were employed for identification of Anopheles species, including An. coluzzii and An. gambiae s.s. Individual An. gambiae mosquitoes were tested for Plasmodium falciparum and P. vivax sporozoites using the VecTest™ malaria panel assay and an enzyme-linked immunosorbent assay. A systematic research of Ministry of Health statistical yearbooks was performed to determine malaria prevalence in children below the age of 5 years.

Results: Culex larval breeding sites were observed in large numbers throughout Conakry in both seasons. While Anopheles larval breeding sites were less frequent than Culex breeding sites, there was a high odds of finding An. gambiae mosquito larvae in agricultural sites during the rainy season. Over the 1-year study period, a total of 14,334 adult mosquitoes were collected; 14,135 Culex (98.6%) and 161 (1.1%) from the An. gambiae complex. One-hundred and twelve Anopheles mosquitoes, mainly collected from rice fields and gardens, were subjected to molecular analysis. Most of the mosquitoes were An. gambiae s.s. (n = 102; 91.1%) while the remaining 10 (8.9%) were An. melas. The molecular M form of An. gambiae s.s. was predominant (n = 89; 79.5%). The proportions of kdr genotype in the An. gambiae s.s. M and S form were 65.2 and 81.8% (n = 9), respectively. No sporozoite infection were detected in any of the mosquitoes tested. The prevalence of Plasmodium recorded in children aged below 5 years was relatively low and varied between 2.2 and 7.6% from 2009 to 2012.

Conclusions: The low density of larval and adult stages of Anopheles mosquitoes, the absence of infected An. gambiae species and the low prevalence of Plasmodium in under 5-year-old children are important features that might facilitate malaria elimination in Conakry. The heterogeneity in species composition and resistance profiles call for vector control interventions that are tailored to the local bio-ecological setting.

Keywords: Anopheles; Bio-ecology; Guinea; Malaria; Plasmodium; Transmission.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Distribution of mosquito breeding sites during the seasons in Conakry
Fig. 2
Fig. 2
Variation of mosquito density according to the season
Fig. 3
Fig. 3
Evolution of Culex and Anopheles parity rate around the year
Fig. 4
Fig. 4
Distribution of the Anopheles gambiae species and molecular form in Conakry
Fig. 5
Fig. 5
Malaria infection prevalence in children <5 years old, in Conakry

References

    1. WHO. Malaria report. Geneva: World Health Organization; 2015. http://www.who.int/mediacentre/factsheets/fs094/en/; Fact sheet N°94. Accessed 2 Oct 2015.
    1. Bhatt S, Weiss D, Cameron E, Bisanzio M, Dalrymple U, Battle K, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–211. doi: 10.1038/nature15535. - DOI - PMC - PubMed
    1. Kelly-Hope L, Ranson H, Hemingway J. Lessons from the past: managing insecticide resistance in malaria control and eradication programs. Lancet Infect Dis. 2008;8:387–389. doi: 10.1016/S1473-3099(08)70045-8. - DOI - PubMed
    1. McGreevy PB, Bryan JH, Oothuman P, Kolstrup N. The lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae. Trans R Soc Trop Med Hyg. 1978;72:361–368. doi: 10.1016/0035-9203(78)90128-1. - DOI - PubMed
    1. Eckhoff PA. A malaria transmission-directed model of mosquito life cycle and ecology. Malar J. 2011;10:303. doi: 10.1186/1475-2875-10-303. - DOI - PMC - PubMed

Publication types