Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun 10:88:257-66.
doi: 10.1016/j.ejps.2016.03.016. Epub 2016 Mar 16.

(18)F-labeling syntheses and preclinical evaluation of functionalized nanoliposomes for Alzheimer's disease

Affiliations

(18)F-labeling syntheses and preclinical evaluation of functionalized nanoliposomes for Alzheimer's disease

Johanna Rokka et al. Eur J Pharm Sci. .

Abstract

The aim of the present study was to synthesize functionalized (18)F-labeled NLs ((18)F-NLs) and evaluate their biological behavior in mouse models of Alzheimer's disease (AD) using positron emission tomography (PET) and ex vivo brain autoradiography. (18)F-fluorine was introduced to (18)F-NLs either by using a core forming (18)F-lipid or by encapsulating a (18)F-tracer, (18)F-treg-curcumin inside the NLs. Phosphatidic acid (PA) and curcumin derivative (Curc) functionalized (18)F-NLs with or without additional mApoE functionalization were produced using thin film hydration. The biodistribution and β-amyloid plaque-binding ability of (18)F-NLs were studied in wild type mice and AD mouse models using in vivo PET imaging and ex vivo brain autoradiography at 60min after (18)F-NL injection. Functionalized (18)F-NLs were successfully synthesized. The preclinical evaluation in mice showed that the functional group affected the biodistribution of (18)F-NLs. Further functionalization with mApoE increased the brain-to-blood ratio of (18)F-NLs but the overall brain uptake remained low with all functionalized (18)F-NLs. The liposomal encapsulation of (18)F-treg-curcumin was not successful and preclinical results of encapsulated (18)F-treg-curcumin and plain (18)F-treg-curcumin were identical. Although the studied functionalized (18)F-NLs were not suitable for PET imaging as such, the synthesis techniques introduced in this study can be utilized to modify the biological behavior of (18)F-labeled NLs.

Keywords: Alzheimer's disease; Functionalized nanoliposomes; Nucleophilic 18F-fluorination; Positron emission tomography (PET); β-amyloid plaques.

PubMed Disclaimer

LinkOut - more resources