Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 May;17(5):257-71.
doi: 10.1038/nrg.2016.10. Epub 2016 Mar 21.

Translating RNA sequencing into clinical diagnostics: opportunities and challenges

Affiliations
Review

Translating RNA sequencing into clinical diagnostics: opportunities and challenges

Sara A Byron et al. Nat Rev Genet. 2016 May.

Abstract

With the emergence of RNA sequencing (RNA-seq) technologies, RNA-based biomolecules hold expanded promise for their diagnostic, prognostic and therapeutic applicability in various diseases, including cancers and infectious diseases. Detection of gene fusions and differential expression of known disease-causing transcripts by RNA-seq represent some of the most immediate opportunities. However, it is the diversity of RNA species detected through RNA-seq that holds new promise for the multi-faceted clinical applicability of RNA-based measures, including the potential of extracellular RNAs as non-invasive diagnostic indicators of disease. Ongoing efforts towards the establishment of benchmark standards, assay optimization for clinical conditions and demonstration of assay reproducibility are required to expand the clinical utility of RNA-seq.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Figure 1
Figure 1. Diversity of RNA species detection enabled by RNA sequencing applications.
Various RNA sequencing (RNA-seq) methodologies can be used to measure diverse, clinically relevant RNA species. Small RNA deep sequencing uses size selection to sequence various small non-coding RNAs, including microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs). Precursor RNAs can be measured using random primer amplification and oligo(dT) primers can be used to select polyadenylated transcripts. RNA-seq also allows for detection and measurement of alternative transcripts, chimeric gene fusion transcripts and viral RNA transcripts, as well as evaluation for allele-specific expression. HPV, human papillomavirus; lncRNA, long non-coding RNA; poly(A), polyadenylation; qRT-PCR, quantitative reverse transcription PCR; rRNA, ribosomal RNA; snoRNA, small nucleolar RNA; VUSs, variants of undetermined significance. PowerPoint slide
Figure 2
Figure 2. Criteria for clinical test development and adoption.
Before initial clinical introduction, a clinical test must demonstrate analytical validity, showing sufficient assay performance to produce accurate and reproducible technical results. Demonstration of analytical validity involves several measures, including sensitivity (true technical positives), specificity (true technical negatives), robustness and limits of detection. Clinical validity follows analytical validity and, depending on the approval path, demonstration of clinical validity can come before (US Food and Drug Administration (FDA) in vitro diagnostic device) or after (Clinical Laboratory Improvement Amendments (CLIA) laboratory-developed test) test clearance or approval. Clinical validity refers to the concordance between the test result and the clinical diagnosis or outcome and involves measures of sensitivity (true clinical positives) and specificity (true clinical negatives), as well as determination of positive and negative predictive values. Demonstration of both analytical validity and clinical validity occurs before that of clinical utility. Clinical utility requires clinical evidence that use of the test has an impact on patient care and includes evaluation of patient outcomes and the economic benefits associated with the test. ELSI, National Human Genome Research Institute's Ethical, Legal and Social Implications Research Program. PowerPoint slide

References

    1. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods. 2008;5:621–628. doi: 10.1038/nmeth.1226. - DOI - PubMed
    1. Doebele RC, et al. An oncogenic NTRK fusion in a soft tissue sarcoma patient with response to the tropomyosin-related kinase (TRK) inhibitor LOXO-101. Cancer Discov. 2015;5:1049–1057. doi: 10.1158/2159-8290.CD-15-0443. - DOI - PMC - PubMed
    1. Sonu RJ, Jonas BA, Dwyre DM, Gregg JP, Rashidi HH. Optimal molecular methods in detecting p190 (BCR-ABL) fusion variants in hematologic malignancies: a case report and review of the literature. Case Rep. Hematol. 2015;2015:458052. - PMC - PubMed
    1. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94. doi: 10.1016/j.cell.2014.03.008. - DOI - PubMed
    1. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57–63. doi: 10.1038/nrg2484. - DOI - PMC - PubMed

Publication types

MeSH terms