Whole genome sequencing provides insights into the genetic determinants of invasiveness in Salmonella Dublin
- PMID: 26996313
- PMCID: PMC9150539
- DOI: 10.1017/S0950268816000492
Whole genome sequencing provides insights into the genetic determinants of invasiveness in Salmonella Dublin
Abstract
Salmonella enterica subsp. enterica serovar Dublin (S. Dublin) is one of the non-typhoidal Salmonella (NTS); however, a relatively high proportion of human infections are associated with invasive disease. We applied whole genome sequencing to representative invasive and non-invasive clinical isolates of S. Dublin to determine the genomic variations among them and to investigate the underlying genetic determinants associated with invasiveness in S. Dublin. Although no particular genomic variation was found to differentiate in invasive and non-invasive isolates four virulence factors were detected within the genome of all isolates including two different type VI secretion systems (T6SS) encoded on two Salmonella pathogenicity islands (SPI), including SPI-6 (T6SSSPI-6) and SPI-19 (T6SSSPI-19), an intact lambdoid prophage (Gifsy-2-like prophage) that contributes significantly to the virulence and pathogenesis of Salmonella serotypes in addition to a virulence plasmid. These four virulence factors may all contribute to the potential of S. Dublin to cause invasive disease in humans.
Keywords: Comparative genomics; Salmonella Dublin; invasiveness.
Figures
References
-
- Jones TF, et al. Salmonellosis outcomes differ substantially by serotype. Journal of Infectious Diseases 2008; 198: 109–114. - PubMed
-
- Morris C, et al. Salmonella enterica serovar Dublin strains which are Vi antigen-positive use type IVB pili for bacterial self-association and human intestinal cell entry. Microbial Pathogenesis 2003; 35: 279–284. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
