Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar;11(3):1615-1620.
doi: 10.3892/ol.2016.4113. Epub 2016 Jan 14.

Epithelial-mesenchymal transition in glioblastoma progression

Affiliations

Epithelial-mesenchymal transition in glioblastoma progression

Yasuo Iwadate. Oncol Lett. 2016 Mar.

Abstract

Epithelial-mesenchymal transition (EMT) is a reversible biological process that occurs in epithelial cells. EMT ultimately leads to the acquisition of a mesenchymal phenotype, characterized by increased cell motility and resistance to genotoxic agents. These processes mostly overlap with the acquirement of stem cell properties in differentiated tumor cells. With regard to gliomas, the clinical picture is heterogeneous, even within the same grades and histological categories of the disease. Furthermore, the areas of invasion and responses to radiochemotherapy are markedly different among cases, and occasionally even in the same patient. Such phenotypic diversity in glioma tissues may be caused by various microenvironmental factors, as well as intrinsic genetic alterations. The current review focuses on the EMT-inducing factors that are present in gliomas; these typically vary from those observed in epithelial cancers, as no basement membrane is present. Furthermore, the most important cell-cell contact factor, E-cadherin, is rarely expressed in gliomas. The microenvironment that induces EMT in gliomas is characterized by hypoxia and the enrichment of myeloid cells following stimulation by transforming growth factor-β. Anti-vascular endothelial growth factor therapy, including the use of bevacizumab, may be a suitable candidate to modulate the glioma microenvironment.

Keywords: epithelial-mesenchymal transition; glioma; microRNA; stem cell.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Scheme for the epithelial-mesenchymal transition in glioma cells. Glioma cells lose adhesion molecules and alter their cytoskeleton through a reprogramming process. It is essential that this phenotypic change is reversible, and the reverse process, termed mesenchymal-epithelial transition, is necessary for the formation of distant or disseminated tumor nodules.

Similar articles

Cited by

References

    1. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–1428. doi: 10.1172/JCI39104. - DOI - PMC - PubMed
    1. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429–1437. doi: 10.1172/JCI36183. - DOI - PMC - PubMed
    1. Kahlert UD, Nikkhah G, Maciaczyk J. Epithelial-to-mesenchymal (−like) transition as a relevant molecular event in malignant gliomas. Cancer Lett. 2013;331:131–138. doi: 10.1016/j.canlet.2012.12.010. - DOI - PubMed
    1. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–715. doi: 10.1016/j.cell.2008.03.027. - DOI - PMC - PubMed
    1. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–173. doi: 10.1016/j.ccr.2006.02.019. - DOI - PubMed