Experimental test of Landauer's principle in single-bit operations on nanomagnetic memory bits
- PMID: 26998519
- PMCID: PMC4795654
- DOI: 10.1126/sciadv.1501492
Experimental test of Landauer's principle in single-bit operations on nanomagnetic memory bits
Abstract
Minimizing energy dissipation has emerged as the key challenge in continuing to scale the performance of digital computers. The question of whether there exists a fundamental lower limit to the energy required for digital operations is therefore of great interest. A well-known theoretical result put forward by Landauer states that any irreversible single-bit operation on a physical memory element in contact with a heat bath at a temperature T requires at least k B T ln(2) of heat be dissipated from the memory into the environment, where k B is the Boltzmann constant. We report an experimental investigation of the intrinsic energy loss of an adiabatic single-bit reset operation using nanoscale magnetic memory bits, by far the most ubiquitous digital storage technology in use today. Through sensitive, high-precision magnetometry measurements, we observed that the amount of dissipated energy in this process is consistent (within 2 SDs of experimental uncertainty) with the Landauer limit. This result reinforces the connection between "information thermodynamics" and physical systems and also provides a foundation for the development of practical information processing technologies that approach the fundamental limit of energy dissipation. The significance of the result includes insightful direction for future development of information technology.
Keywords: Energy Dissipation; Information thermodynamics; Landauer Erasure; Minimum Energy; Nanomagnetic memory.
Figures




Similar articles
-
Experimental verification of Landauer's principle linking information and thermodynamics.Nature. 2012 Mar 7;483(7388):187-9. doi: 10.1038/nature10872. Nature. 2012. PMID: 22398556
-
Landauer limit of energy dissipation in a magnetostrictive particle.J Phys Condens Matter. 2014 Dec 10;26(49):492203. doi: 10.1088/0953-8984/26/49/492203. Epub 2014 Nov 7. J Phys Condens Matter. 2014. PMID: 25379608
-
Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit.Phys Rev Lett. 2011 Jul 1;107(1):010604. doi: 10.1103/PhysRevLett.107.010604. Epub 2011 Jul 1. Phys Rev Lett. 2011. PMID: 21797532
-
Nanomagnet logic: progress toward system-level integration.J Phys Condens Matter. 2011 Dec 14;23(49):493202. doi: 10.1088/0953-8984/23/49/493202. J Phys Condens Matter. 2011. PMID: 22121192 Review.
-
Tunneling magnetoresistive heads for magnetic data storage.J Nanosci Nanotechnol. 2007 Jan;7(1):1-12. J Nanosci Nanotechnol. 2007. PMID: 17455473 Review.
Cited by
-
Dissipation during the Gating Cycle of the Bacterial Mechanosensitive Ion Channel Approaches the Landauer Limit.Entropy (Basel). 2023 May 10;25(5):779. doi: 10.3390/e25050779. Entropy (Basel). 2023. PMID: 37238534 Free PMC article.
-
Direct measurement of weakly nonequilibrium system entropy is consistent with Gibbs-Shannon form.Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11097-11102. doi: 10.1073/pnas.1708689114. Epub 2017 Oct 3. Proc Natl Acad Sci U S A. 2017. PMID: 29073017 Free PMC article.
-
Analysis of Heat Dissipation and Reliability in Information Erasure: A Gaussian Mixture Approach.Entropy (Basel). 2018 Sep 30;20(10):749. doi: 10.3390/e20100749. Entropy (Basel). 2018. PMID: 33265838 Free PMC article.
-
Algorithmic Entropy and Landauer's Principle Link Microscopic System Behaviour to the Thermodynamic Entropy.Entropy (Basel). 2018 Oct 17;20(10):798. doi: 10.3390/e20100798. Entropy (Basel). 2018. PMID: 33265885 Free PMC article.
-
Fundamental energy cost of finite-time parallelizable computing.Nat Commun. 2023 Jan 27;14(1):447. doi: 10.1038/s41467-023-36020-2. Nat Commun. 2023. PMID: 36707510 Free PMC article.
References
-
- Landauer R., Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183− 191 (1961).
-
- Landauer R., Dissipation and noise immunity in computation and communication. Nature 335, 779− 784 (1988).
-
- Meindl J. D., Davis J. A., The fundamental limit on binary switching energy for terascale integration (TSI). IEEE J. Solid-St. Circ. 35, 1515− 1516 (2000).
-
- Bérut A., Arakelyan A., Petrosyan A., Ciliberto S., Dilenshneider R., Lutz E., Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 484, 187− 189 (2012). - PubMed
-
- Jun Y., Gavrilov M., Bechhoefer J., High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 190601 (2014). - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources