Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle
- PMID: 27003103
- PMCID: PMC5087277
- DOI: 10.1021/acschembio.6b00083
Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle
Abstract
The ClpXP protease assembles in a reaction in which an ATP-bound ring hexamer of ClpX binds to one or both heptameric rings of the ClpP peptidase. Contacts between ClpX IGF-loops and clefts on a ClpP ring stabilize the complex. How ClpXP stability is maintained during the ATP-hydrolysis cycle that powers mechanical unfolding and translocation of protein substrates is poorly understood. Here, we use a real-time kinetic assay to monitor the effects of nucleotides on the assembly and disassembly of ClpXP. When ATP is present, complexes containing single-chain ClpX assemble via an intermediate and remain intact until transferred into buffers containing ADP or no nucleotides. ATP binding to high-affinity subunits of the ClpX hexamer prevents rapid dissociation, but additional subunits must be occupied to promote assembly. Small-molecule acyldepsipeptides, which compete with the IGF loops of ClpX for ClpP-cleft binding, cause exceptionally rapid dissociation of otherwise stable ClpXP complexes, suggesting that the IGF-loop interactions with ClpP must be highly dynamic. Our results indicate that the ClpX hexamer spends almost no time in an ATP-free state during the ATPase cycle, allowing highly processive degradation of protein substrates.
Figures
References
-
- Grimaud R, Kessel M, Beuron F, Steven AC, Maurizi MR. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 1998;273:12476–12481. - PubMed
-
- Jones JM, Welty DJ, Nakai H. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition. J. Biol. Chem. 1988;273:459–465. - PubMed
-
- Joshi SA, Hersch GL, Baker TA, Sauer RT. Communication between ClpX and ClpP during substrate processing and degradation. Nat. Struct. Mol. Biol. 2004;11:404–411. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
