Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 13;138(14):4779-86.
doi: 10.1021/jacs.6b00016. Epub 2016 Apr 4.

Bimetallic C-C Bond-Forming Reductive Elimination from Nickel

Affiliations

Bimetallic C-C Bond-Forming Reductive Elimination from Nickel

Hongwei Xu et al. J Am Chem Soc. .

Abstract

Ni-catalyzed cross-coupling reactions have found important applications in organic synthesis. The fundamental characterization of the key steps in cross-coupling reactions, including C-C bond-forming reductive elimination, represents a significant challenge. Bimolecular pathways were invoked in early proposals, but the experimental evidence was limited. We present the preparation of well-defined (pyridine-pyrrolyl)Ni monomethyl and monophenyl complexes that allow the direct observation of bimolecular reductive elimination to generate ethane and biphenyl, respectively. The sp(3)-sp(3) and sp(2)-sp(2) couplings proceed via two distinct pathways. Oxidants promote the fast formation of Ni(III) from (pyridine-pyrrolyl)Ni-methyl, which dimerizes to afford a bimetallic Ni(III) intermediate. Our data are most consistent with the subsequent methyl coupling from the bimetallic Ni(III) to generate ethane as the rate-determining step. In contrast, the formation of biphenyl is facilitated by the coordination of a bidentate donor ligand.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources