Arterial Tortuosity: An Imaging Biomarker of Childhood Stroke Pathogenesis?
- PMID: 27006453
- PMCID: PMC4846544
- DOI: 10.1161/STROKEAHA.115.011331
Arterial Tortuosity: An Imaging Biomarker of Childhood Stroke Pathogenesis?
Abstract
Background and purpose: Arteriopathy is the leading cause of childhood arterial ischemic stroke. Mechanisms are poorly understood but may include inherent abnormalities of arterial structure. Extracranial dissection is associated with connective tissue disorders in adult stroke. Focal cerebral arteriopathy is a common syndrome where pathophysiology is unknown but may include intracranial dissection or transient cerebral arteriopathy. We aimed to quantify cerebral arterial tortuosity in childhood arterial ischemic stroke, hypothesizing increased tortuosity in dissection.
Methods: Children (1 month to 18 years) with arterial ischemic stroke were recruited within the Vascular Effects of Infection in Pediatric Stroke (VIPS) study with controls from the Calgary Pediatric Stroke Program. Objective, multi-investigator review defined diagnostic categories. A validated imaging software method calculated the mean arterial tortuosity of the major cerebral arteries using 3-dimensional time-of-flight magnetic resonance angiographic source images. Tortuosity of unaffected vessels was compared between children with dissection, transient cerebral arteriopathy, meningitis, moyamoya, cardioembolic strokes, and controls (ANOVA and post hoc Tukey). Trauma-related versus spontaneous dissection was compared (Student t test).
Results: One hundred fifteen children were studied (median, 6.8 years; 43% women). Age and sex were similar across groups. Tortuosity means and variances were consistent with validation studies. Tortuosity in controls (1.346±0.074; n=15) was comparable with moyamoya (1.324±0.038; n=15; P=0.998), meningitis (1.348±0.052; n=11; P=0.989), and cardioembolic (1.379±0.056; n=27; P=0.190) cases. Tortuosity was higher in both extracranial dissection (1.404±0.084; n=22; P=0.021) and transient cerebral arteriopathy (1.390±0.040; n=27; P=0.001) children. Tortuosity was not different between traumatic versus spontaneous dissections (P=0.70).
Conclusions: In children with dissection and transient cerebral arteriopathy, cerebral arteries demonstrate increased tortuosity. Quantified arterial tortuosity may represent a clinically relevant imaging biomarker of vascular biology in pediatric stroke.
Keywords: arterial tortuosity; child; dissection; magnetic resonance angiography; pediatric stroke; stroke.
© 2016 American Heart Association, Inc.
Figures





References
-
- Mackay MT, Wiznitzer M, Benedict SL, Lee KJ, deVeber GA, Ganesan V. Arterial ischemic stroke risk factors: the international pediatric stroke study. Ann Neurol. 2011;69:130–140. - PubMed
-
- Fullerton HJ, Wu YW, Sidney S, Johnston SC. Risk of recurrent childhood arterial ischemic stroke in a population-based cohort: the importance of cerebrovascular imaging. Pediatrics. 2007;119:495–501. - PubMed
-
- Dlamini N, Freeman JL, Mackay MT, Hawkins C, Shroff M, Fullerton HJ, et al. Intracranial dissection mimicking transient cerebral arteriopathy in childhood arterial ischemic stroke. J Child Neurol. 2011;26:1203–1206. - PubMed
-
- Saba L, Argiolas GM, Sumer S, Siotto P, Raz E, Sanfilippo R, et al. Association between internal carotid artery dissection and arterial tortuosity. Neuroradiology. 2015;57:149–153. - PubMed
Publication types
MeSH terms
Substances
Supplementary concepts
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical