Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr;48(2):303-11.
doi: 10.1111/j.1529-8817.2012.01125.x. Epub 2012 Mar 19.

NONPHOSPHORUS LIPIDS IN PERIPHYTON REFLECT AVAILABLE NUTRIENTS IN THE FLORIDA EVERGLADES, USA(1)

Affiliations

NONPHOSPHORUS LIPIDS IN PERIPHYTON REFLECT AVAILABLE NUTRIENTS IN THE FLORIDA EVERGLADES, USA(1)

Brent J Bellinger et al. J Phycol. 2012 Apr.

Abstract

Algal and plant production of nonphosphorus lipids in place of phospholipids is a physiological response to low phosphorus (P) availability. This response has been shown in culture and in marine plankton studies, but examples from freshwater algae remain minimal. Herein, we analyzed the nutrient contents and lipid composition of periphyton communities across the Florida Everglades ecosystem. We hypothesized that in phosphate-poor areas, periphyton in high- and low-sulfate waters would vary the proportion of sulfolipids (SLs) and betaine lipids (BLs), respectively. In phosphate-enriched areas, periphyton would produce more phospholipids (PLs). We observed that at low-P sites, PLs were a minor lipid component. In cyanobacteria-dominated periphyton where sulfate was abundant, BLs were only slightly more abundant than SLs. However, in the low-P, low-sulfate area, periphyton were comprised to a greater degree green algae and diatoms, and BLs represented the majority of the total lipids. Even in a P-rich area, PLs were a small component of periphyton lipid profiles. Despite the phosphorus limitations of the Everglades, periphyton can develop tremendous biomass. Our results suggest a physiological response by periphyton to oligotrophic conditions whereby periphyton increase abundances of nonphosphorus lipids and have reduced proportions of PLs.

Keywords: betaine lipid; everglades; oligotrophic; periphyton; phospholipid; sulfolipid.

PubMed Disclaimer