Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 25;11(3):e0152476.
doi: 10.1371/journal.pone.0152476. eCollection 2016.

Identification of Non-HLA Genes Associated with Celiac Disease and Country-Specific Differences in a Large, International Pediatric Cohort

Affiliations

Identification of Non-HLA Genes Associated with Celiac Disease and Country-Specific Differences in a Large, International Pediatric Cohort

Ashok Sharma et al. PLoS One. .

Abstract

Objectives: There are significant geographical differences in the prevalence and incidence of celiac disease that cannot be explained by HLA alone. More than 40 loci outside of the HLA region have been associated with celiac disease. We investigated the roles of these non-HLA genes in the development of tissue transglutaminase autoantibodies (tTGA) and celiac disease in a large international prospective cohort study.

Methods: A total of 424,788 newborns from the US and European general populations and first-degree relatives with type 1 diabetes were screened for specific HLA genotypes. Of these, 21,589 carried 1 of the 9 HLA genotypes associated with increased risk for type 1 diabetes and celiac disease; we followed 8676 of the children in a 15 y prospective follow-up study. Genotype analyses were performed on 6010 children using the Illumina ImmunoChip. Levels of tTGA were measured in serum samples using radio-ligand binding assays; diagnoses of celiac disease were made based on persistent detection of tTGA and biopsy analysis. Data were analyzed using Cox proportional hazards analyses.

Results: We found 54 single-nucleotide polymorphisms (SNPs) in 5 genes associated with celiac disease (TAGAP, IL18R1, RGS21, PLEK, and CCR9) in time to celiac disease analyses (10-4>P>5.8x10-6). The hazard ratios (HR) for the SNPs with the smallest P values in each region were 1.59, 1.45, 2.23, 2.64, and 1.40, respectively. Outside of regions previously associated with celiac disease, we identified 10 SNPs in 8 regions that could also be associated with the disease (P<10-4). A SNP near PKIA (rs117128341, P = 6.5x10-8, HR = 2.8) and a SNP near PFKFB3 (rs117139146, P<2.8x10-7, HR = 4.9) reached the genome-wide association threshold in subjects from Sweden. Analyses of time to detection of tTGA identified 29 SNPs in 2 regions previously associated with celiac disease (CTLA4, P = 1.3x10-6, HR = 0.76 and LPP, P = 2.8x10-5, HR = .80) and 6 SNPs in 5 regions not previously associated with celiac disease (P<10-4); non-HLA genes are therefore involved in development of tTGA.

Conclusions: In conclusion, using a genetic analysis of a large international cohort of children, we associated celiac disease development with 5 non-HLA regions previously associated with the disease and 8 regions not previously associated with celiac disease. We identified 5 regions associated with development of tTGA. Two loci associated with celiac disease progression reached a genome-wide association threshold in subjects from Sweden.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: Dr. David Hadley is an employee of TransMed System Inc. but participated in this study as an employee of Pediatric Epidemiology Center, Department of Pediatrics, University of South Florida, Tampa, FL, USA. TransMed Systems, Inc., Cupertino, CA, USA, played no role in this study, and the specific roles of Dr. Hadley is articulated in the Author Contributions section. There are no patents, products in development, or marked products to declare. This does not alter the authors' adherence to PLOS ONE policies on sharing data or materials.

Figures

Fig 1
Fig 1. SNPs in the previously reported celiac disease associated regions.
Manhattan plot of P-values on the −log10 scale for SNPs (±400kb) previously associated with celiac disease (A) and persistent tissue transglutaminase autoantibody (tTGA) positivity (B). HRs and p-values are calculated using three possible genotypes and adjusted for family history of celiac disease, HLA-DR-DQ genotype, gender, HLA-DPB1, population stratification (ancestral heterogeneity) and country of residence (as strata). The red dashed line represents p = 1x10−4. Kaplan-Meier plots of the three most significant SNPs associated with celiac disease (C) and tTGA (D) are plotted by dividing the subjects in two groups: (i) Major homozygous (black curves) and (ii) Heterozygous combined with minor homozygous (red curves).
Fig 2
Fig 2. Associations with risk of celiac disease and risk of persistent tissue transglutaminase autoantibody (tTGA) positivity.
Manhattan plot of 133,620 SNPs with MAF>0.01, displaying the P-values on the −log10 scale for SNP associations with celiac disease (A) and persistent tTGA positivity (B). HRs and p-values are calculated using three possible genotypes and adjusted for family history of celiac disease, HLA-DR-DQ genotype, gender, HLA-DPB1, population stratification (ancestral heterogeneity) and country of residence (as strata). The red dashed line represents p = 1x10−4, the red solid line represents Bonferroni correction threshold. Kaplan-Meier plots of selected SNPs associated with celiac disease (C) and persistent tTGA (D) are plotted by dividing the subjects in two groups: (i) Major homozygous (black curves) and (ii) Heterozygous combined with minor homozygous (red curves).
Fig 3
Fig 3. Associations with risk of celiac disease in the Swedish population.
A: Manhattan plot of 133620 SNPs with MAF>0.01, displaying the P-values on the −log10 scale for the SNPs associated with celiac disease in the Swedish TEDDY population. B: Regional association plots at the PKIA locus generated by LocusZoom, showing the significance of association and the recombination rate. Colors represent HapMap CEU linkage disequilibrium r2 values with the most significantly associated SNP (rs117128341; shown in purple). C: Pairwise LD plot for five SNPs in the region of PKIA. The five most significant SNPs from this region are in high LD with each other.
Fig 4
Fig 4. Country-specific associations with risk of celiac disease.
Kaplan-Meier plots of five SNPs mapped to the PKIA region and one SNP mapped to the PFKFB3 region, in the Swedish TEDDY population (A) and in the other TEDDY countries (B). Kaplan-Meier plots clearly indicate country-specific differences. HRs and p-values are calculated using three possible genotypes and adjusted for family history of celiac disease, HLA-DR-DQ genotype, gender, HLA-DPB1 and population stratification (ancestral heterogeneity).
Fig 5
Fig 5. Flow chart of study participants.
The Environmental Determinants of Diabetes in the Young (TEDDY) is an international multicenter study that screened over 420,000 newborns from the general population in four different countries. The present study genotyped 195,806 SNPs on ImmunoChip in 6,010 TEDDY children to identify potential genetic factors responsible for the development of CD and country-specific differences in genetic predisposition. As shown in flow chart, a total of 6,010 subjects were included in the analysis of time-to-CD, and 5379 subjects were included in the analysis of time-to-tTGA.

References

    1. DeMarchi M, Borelli I, Olivetti E, Richiardi P, Wright P, Ansaldi N, et al. (1979) Two HLA-D and DR alleles are associated with coeliac disease. Tissue Antigens 14: 309–316. - PubMed
    1. Ploski R, Ek J, Thorsby E, Sollid LM (1993) On the HLA-DQ(alpha 1*0501, beta 1*0201)-associated susceptibility in celiac disease: a possible gene dosage effect of DQB1*0201. Tissue Antigens 41: 173–177. - PubMed
    1. Margaritte-Jeannin P, Babron MC, Bourgey M, Louka AS, Clot F, Percopo S, et al. (2004) HLA-DQ relative risks for coeliac disease in European populations: a study of the European Genetics Cluster on Coeliac Disease. Tissue Antigens 63: 562–567. - PubMed
    1. Kaukinen K, Partanen J, Maki M, Collin P (2002) HLA-DQ typing in the diagnosis of celiac disease. Am J Gastroenterol 97: 695–699. - PubMed
    1. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. (2010) Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 42: 295–302. 10.1038/ng.543 - DOI - PMC - PubMed

Publication types

MeSH terms