An estimating equation approach to dimension reduction for longitudinal data
- PMID: 27017956
- PMCID: PMC4803001
- DOI: 10.1093/biomet/asv066
An estimating equation approach to dimension reduction for longitudinal data
Abstract
Sufficient dimension reduction has been extensively explored in the context of independent and identically distributed data. In this article we generalize sufficient dimension reduction to longitudinal data and propose an estimating equation approach to estimating the central mean subspace. The proposed method accounts for the covariance structure within each subject and improves estimation efficiency when the covariance structure is correctly specified. Even if the covariance structure is misspecified, our estimator remains consistent. In addition, our method relaxes distributional assumptions on the covariates and is doubly robust. To determine the structural dimension of the central mean subspace, we propose a Bayesian-type information criterion. We show that the estimated structural dimension is consistent and that the estimated basis directions are root-[Formula: see text] consistent, asymptotically normal and locally efficient. Simulations and an analysis of the Framingham Heart Study data confirm the effectiveness of our approach.
Keywords: Central mean subspace; Dimension reduction; Estimating equation; Longitudinal data; Semiparametric efficiency; Sliced inverse regression.
References
-
- Arbuckle J. L., Marcoulides G. A. & Schumacker R. E. (1996). Full information estimation in the presence of incomplete data. In Advanced Structural Equation Modeling: Issues and Techniques, A. George & E. S. Randall, eds. Mahwah, New Jersey: Lawrence Erlbaum Associates, pp. 243–77.
-
- Bai Y., Fung W. K. & Zhu Z. Y. (2009). Penalized quadratic inference functions for single-index models with longitudinal data. J. Mult. Anal. 100, 152–61.
-
- Bi X. & Qu A. (2015). Sufficient dimension reduction for longitudinal data. Statist. Sinica 25, 787–807.
-
- Bickel P. J., Klaassen C. A., Bickel P. J., Ritov Y., Klaassen J., Wellner J. A. & Ritov Y. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Baltimore: Johns Hopkins University Press.
-
- Brown C. D., Higgins M., Donato K. A., Rohde F. C., Garrison R., Obarzanek E., Ernst N. D. & Horan M. (2000). Body mass index and the prevalence of hypertension and dyslipidemia. Obesity Res. 8, 605–19. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources