Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jan 16;477(1-2):183-95.
doi: 10.1016/0006-8993(89)91406-6.

Timing and distribution of flash-evoked activity in the lateral geniculate nucleus of the alert monkey

Affiliations

Timing and distribution of flash-evoked activity in the lateral geniculate nucleus of the alert monkey

C E Schroeder et al. Brain Res. .

Abstract

Simultaneous recording of activity from multiple cortical laminae in alert monkeys, using multichannel electrodes, has been used to identify the intracranial generators of surface-recorded, visually evoked potentials (VEP) to stroboscopic flash. Beyond their clinical implications, these results offer an unique view of the timing and sequence of cortical visual processing in the alert monkey, including the somewhat surprising findings of an extremely short-latency response in lamina IVA, a contra- over ipsilateral latency advantage throughout lamina IV, and the lack of a consistent flash-evoked response in the major cortical recipient of the magnocellular system, lamina IVCa. The present study used similar techniques to examine flash-evoked activity in LGN and in optic tract, both to elucidate the role of the subcortical pathways in establishing this pattern, and to provide a parallel, detailed view of the timing of visual activity in LGN and optic tract in the alert monkey. Flash-evoked responses are robust in both parvo- and magnocellular laminae, but these responses differ along several dimensions: (1) parvocellular multiunit activity (MUA) is 1/4 to 1/2 the amplitude of magnocellular MUA; (2) oscillatory activity is higher in frequency and shorter in duration in parvo- than in magnocellular responses; (3) inhibitory processes appear less prominent and diverse in parvo- than in magnocellular activity; (4) mean onset latencies of MUA are longer in parvo- than in magnocellular laminae, but there is extensive overlap in these distributions. Latencies encountered in ipsilateral lamina 3, and at laminar borders dorsal to 3, group more clearly with those of the magnocellular laminae than with those of the other parvocellular laminae. As a result, in the parvocellular division as a whole, the average latency to ipsilateral stimulation is shorter than that to contralateral stimulation. The optic tract exhibits a dorsal-to-ventral progression of onset latency and oscillation frequency consistent with a dorsal/ventral segregation of the inputs to parvo- and magnocellular layers. Comparison of optic tract and LGN data reveals that while many LGN response characteristics are initiated in the retina, significant modification of retinal output occurs at LGN. The techniques used here permit a particularly sensitive and reliable assessment of the timing and distribution of visual responses in the optic tract and LGN of alert monkeys. Our data support the view that in the alert monkey, the surface-VEP to passive, binocular flash primarily reflects activation of parvocellular thalamorecipient laminae of Area 17.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources