Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar 14;2(1):100-14.
doi: 10.3390/antibiotics2010100.

Bacterial Responses and Genome Instability Induced by Subinhibitory Concentrations of Antibiotics

Affiliations
Review

Bacterial Responses and Genome Instability Induced by Subinhibitory Concentrations of Antibiotics

Luisa Laureti et al. Antibiotics (Basel). .

Abstract

Nowadays, the emergence and spread of antibiotic resistance have become an utmost medical and economical problem. It has also become evident that subinhibitory concentrations of antibiotics, which pollute all kind of terrestrial and aquatic environments, have a non-negligible effect on the evolution of antibiotic resistance in bacterial populations. Subinhibitory concentrations of antibiotics have a strong effect on mutation rates, horizontal gene transfer and biofilm formation, which may all contribute to the emergence and spread of antibiotic resistance. Therefore, the molecular mechanisms and the evolutionary pressures shaping the bacterial responses to subinhibitory concentrations of antibiotics merit to be extensively studied. Such knowledge is valuable for the development of strategies to increase the efficacy of antibiotic treatments and to extend the lifetime of antibiotics used in therapy by slowing down the emergence of antibiotic resistance.

Keywords: antibiotics; mutagenesis; resistance; stress response.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Impact of antibiotics on bacterial population.
Figure 2
Figure 2
Schematic representation of how Escherichia coli cells modulate mutation rates in response to subinhibitory concentrations of bactericidal antibiotics. Bactericidal antibiotics, like ampicillin, induce ROS production by stimulating cellular respiratory activity. ROS damage all cellular macromolecules, thus promoting, for example, protein oxidation, DNA replication arrest and oxidation of dNTPs pool. In the presence of subinhibitory concentration of ampicillin, the amount of RpoS and PolIV proteins is increased, most likely because the ClpPX protease-chaperon complex, which degrades both RpoS and PolIV, becomes titrated by an increased amount of oxidized proteins. At the same time, the arrest of the DNA replication forks together with higher level of the PolIV error-prone DNA polymerase favors the incorporation of oxidized dNTPs into the DNA, which eventually results in generation of mutations. However, antibiotic-increased mutagenesis is possible only because the mismatch repair system is not able to repair all the PolIV-generated mutations in ampicillin treated cells. The reduction of mismatch repair activity in antibiotic-treated cells is mediated by SdsR, an RpoS-controlled small RNA, which interacts with the mutS mRNA [15].

References

    1. Davies J. Vicious circles: Looking back on resistance plasmids. Genetics. 1995;139:1465–1468. - PMC - PubMed
    1. Berdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. 2012;65:385–395. doi: 10.1038/ja.2012.27. - DOI - PubMed
    1. Mascaretti O.A. Bacteria Versus Antibacterial Agents. An Integrated Approach. ASM Press; Washington, D.C., USA: 2003.
    1. Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. doi: 10.1016/j.cell.2007.06.049. - DOI - PubMed
    1. Dwyer D.J., Camacho D.M., Kohanski M.A., Callura J.M., Collins J.J. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell. 2012;46:561–572. doi: 10.1016/j.molcel.2012.04.027. - DOI - PMC - PubMed