Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine
- PMID: 27029624
- PMCID: PMC4871175
- DOI: 10.1177/0003702816638281
Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine
Abstract
Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable.
Keywords: MicroNIR; NIR; Near-infrared spectroscopy; RMID; SVM; large-scale classification; model transferability; raw material identification; support vector machine.
© The Author(s) 2016.
Figures





References
-
- M.R. Siddiqui, Z.A. AlOthman, N. Rahman. “Analytical Techniques in Pharmaceutical Analysis: A Review”. Arab. J. Chem. (2013).
-
- Sorak D., Herberholz L., Iwascek S., Altinpinar S., Pfeifer F., Siesler H.W. “New Developments and Applications of Handheld Raman, Mid- Infrared, and Near-Infrared Spectrometers”. Appl. Spectrosc. Rev 2011; 47(2): 83–115.
-
- Druy M.A. “Molecular Spectroscopy Workbench Applications for Mid-IR Spectroscopy in the Pharmaceutical Process Environment”. Spectroscopy 2004; 19(2): 60–63.
-
- Luypaert J., Massart D.L., Vander Heyden Y. “Near-Infrared Spectroscopy Applications in Pharmaceutical Analysis”. Talanta 2007; 72(3): 865–883. - PubMed
-
- Vankeirsbilck T., Vercauteren A., Baeyens W., Van der Weken G., Verpoort F., Vergote G., Remon J.P. “Applications of Raman Spectroscopy in Pharmaceutical Analysis”. Trends Anal. Chem 2002; 21(12): 869–877.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous