Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Apr 30;22(2):201-12.
doi: 10.5056/jnm15146.

Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases

Affiliations
Review

Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases

Shadi S Yarandi et al. J Neurogastroenterol Motil. .

Abstract

Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

Keywords: Anxiety; Brain-Gut axis; Depression; Gut microbiota; Stress.

PubMed Disclaimer

Figures

Figure
Figure
Bidirectional interactions between gut microbiota, gut permeability and central nervous system (CNS). Increased gut permeability can lead to translocation of gut microbiota or metabolic products such as lipopolysaccharides through the intestinal barrier. Exposure of epithelial cells or mucosal immune cells to bacterial or metabolic products can lead to activation of an immune response and release of pro-inflammatory cytokines. Additionally, metabolic products can directly affect the function of enteric neurons, spinal sensory neurons and vagus nerve through activation to Toll-like receptors or translocation and release of neuroactive peptides and hormones. On the other hand, stress can lead to activation of the hypothalamus-pituitary axis and excessive release of the corticotropin-releasing factor. This hormone along with altered vagal activity can modulate the local activation of mast cells in the intestinal wall and release of cytokines, causing increased gut permeability. ENS, enteric nervous system.

References

    1. Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci. 2011;12:453–466. doi: 10.1038/nrn3071. - DOI - PMC - PubMed
    1. Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009;136:2003–2014. doi: 10.1053/j.gastro.2009.01.075. - DOI - PubMed
    1. Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014;146:1500–1512. doi: 10.1053/j.gastro.2014.02.037. - DOI - PMC - PubMed
    1. Al-Asmakh M, Anuar F, Zadjali F, Rafter J, Pettersson S. Gut microbial communities modulating brain development and function. Gut Microbes. 2012;3:366–373. doi: 10.4161/gmic.21287. - DOI - PMC - PubMed
    1. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol. 2014;817:373–403. doi: 10.1007/978-1-4939-0897-4_17. - DOI - PubMed