Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr-Jun;8(2):89-96.
doi: 10.4103/0974-8490.172658.

Ameliorative Effects of Chloroform Fraction of Cocos nucifera L. Husk Fiber Against Cisplatin-induced Toxicity in Rats

Affiliations

Ameliorative Effects of Chloroform Fraction of Cocos nucifera L. Husk Fiber Against Cisplatin-induced Toxicity in Rats

Oluwatosin Adekunle Adaramoye et al. Pharmacognosy Res. 2016 Apr-Jun.

Abstract

Background: Cisplatin (Cis) is used in the treatment of solid tumors and is known to elicit serious side effects.

Objective: The present study investigated the protective effects of chloroform fraction of Cocos nucifera husk fiber (CFCN) against Cis-induced organs' damage and chromosomal defect in rats. Quercetin (QUE), standard antioxidant, served as positive control.

Materials and methods: Thirty male Wistar rats were assigned into six groups and treated with corn oil (control), Cis alone, Cis + CFCN, CFCN alone, Cis + QUE, and QUE alone. QUE and CFCN were given at 50 and 200 mg/kg/day, respectively, by oral gavage for 7 days before the rats were exposed to a single dose of Cis (10 mg/kg, intraperitoneal) at the last 36 h of study.

Results: Administration of Cis alone caused a significant (P < 0.05) increase in the levels of serum creatinine and urea by 72% and 70%, respectively, when compared with the control. The activity of serum aspartate aminotransferase was significantly (P < 0.05) increased while alanine aminotransferase and alkaline phosphatase were insignificantly (P > 0.05) affected in Cis-treated rats. Furthermore, the activities of hepatic and renal catalase, superoxide dismutase, glutathione S-transferase, glutathione peroxidase, and levels of reduced glutathione were significantly (P < 0.05) decreased in Cis-treated rats with concomitant elevation of malondialdehyde. Cis exposure increased the frequency of micro nucleated polychromatic erythrocytes (mPCE) by 92%. Pretreatment with CFCN inhibited lipid peroxidation, enhanced the activities of some antioxidative enzymes and reduced the frequency of mPCE.

Conclusions: Chloroform fraction of CFCN may protect against organs damage by Cis. Further studies are required to determine the component of the plant responsible for this activity.

Summary: Cisplatin (Cis) is used in the treatment of solid tumors and is known to elicit serious side effects. This study investigated the protective effects of chloroform fraction of Cocos nucifera husk fiber (CFCN) against Cis-induced organs' damage while quercetin (QUE) served as standard antioxidant.Thirty male Wistar rats were assigned into six groups and treated with corn oil (Control), Cis alone, Cis + CFCN, CFCN alone, Cis + QUE and QUE alone.QUE and CFCN were given at 50 and 200 mg/kg/day respectively by oral gavage for seven days before the rats were exposed to a single dose of Cis (10mg/kg, i.p.) at the last 36 h of study. Results indicate that administration of Cis caused a significant (P<0.05) increase in the levels of serum creatinine and urea by 72% and 70% respectively.The activity of serum aspartate aminotransferase was significantly (P <0.05) increased while alanine aminotransferase and alkaline phosphatase were insignificantly (P>0.05) affected in Cis-treated rats.The activities of hepatic and renal catalase, superoxide dismutase, glutathione-s-transferase, glutathione peroxidase and levels of reduced glutathione were significantly (P<0.05) decreased in Cis-treated rats with concomitant elevation of malondialdehyde.Cis exposure increased the frequency of micronucleated polychromatic erythrocytes (mPCE) by 92%.Pretreatment with CFCN inhibited lipid peroxidation, enhanced the activities of some antioxidative enzymes and reduced the frequency of mPCE. The findings suggest that CFCN may protect against organs damage by cisplatin.Further studies are required to determine the component of the plant responsible for this activity.

Keywords: Antioxidant; Cisplatin; Clastogenicity; Cocos nucifera; Lipid peroxidation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Effects of CFCN on the activities of serum AST and ALT in rats treated with cisplatin. *Significantly different from control (P < 0.05). **Significantly different from control (P < 0.05). CFCN = Chloroform fraction of methanal extract of Cocos nucifera husk fiber, QUE = Quercetin, Cis = Cisplatin
Figure 2
Figure 2
Effects of CFCN on the activity of serum alkaline phosphatase (ALP) in rats treated with cisplatin. Cis = Cisplatin, QUE = Quercetin, CFCN = Choloroform fraction of methanol extract of Cocos nucifera husk fiber
Figure 3
Figure 3
Effects of CFCN on the activities of hepatic and renal superoxide (SOD) in rats treated with cisplatin. *Significantly different from control (P < 0.05). **Significantly different from Cis (P < 0.05). Cis = Cisplatin, QUE = Quercetin, CF = Choloroform fraction of methanol extract of Cocos nucifera husk fiberthe
Figure 4
Figure 4
Effects of CFCN on the activities of testicular superoxide dismutase (SOD) and levels of lipid peroxidation (LPO) in rats treated with cisplatin. Cis = Cisplatin, QUE = Quercetin, CF = Choloroform fraction of methanol extract of Cocos nucifera husk fiber
Figure 5
Figure 5
Effects of CFCN on the activities of hepatic and renal catalase (CAT) in rats treated with cisplatin. *Significantly different from control (P < 0.05). **Significantly different from Cis (P < 0.05) Cis=Cisplatin, QUE= Quercetin, CFCN=Chloroform fraction of methanol extract pf Cocos nucifera husk fiber
Figure 6
Figure 6
Effects of CFCN on hepatic and renal lipid peroxidation (LPO) levels of rats treated with cisplatin. *Significantly different from control (P < 0.05) **Significantly different from Cis (P < 0.05). Cis = Cisplatin, QUE = Quercetin, CFCN = Chloroform fraction of methanol extract pf Cocos nucifera husk fiber
Figure 7
Figure 7
Effects of CFC Non the activities of hepatic and renal glutathione peroxidase (GPx) in rats treated with cisplatin. *Significantly different from control (P < 0.05). **Significantly different from Cis (P < 0.05) Cis = Cisplatin, QUE = Quercetin, CFCN = Chloroform fraction of methanol extract of Cocos nucifera husk fiber
Figure 8
Figure 8
Effects of CFCN on the activities of testicular catalase (CAT) and glutathione peroxidase (GPx) ih rats trated with cisplatin. Cis = Cisplatin, QUE = Quercetin, CFCN = Chloroform fraction of methanol extract of Cocos nucifera husk fiber
Figure 9
Figure 9
Effects of CFCN on hepatic and renal GSH levels of rats treated with cisplatin. *Significantly different from control (P < 0.05). **Significantly different from Cis (P < 0.05). Cis = Cisplatin, QUE = Quercetin, CFCN = Chloroform fraction of methanol extract pf Cocos nucifera husk fiber
Figure 10
Figure 10
Effects of CFCN on testicular GSH level of rats treated with cisplatin. CIS = cisplatin, QUE = Quercetin, CFCN = Chloroform fraction of methanol extract of Cocos nucifera husk fiber

Similar articles

Cited by

References

    1. Jin C, Zou T, Li J, Chen X, Liu X, Wang Y, et al. Side population cell level in human breast cancer and factors related to disease-free survival. Asian Pac J Cancer Prev. 2015;16:991–6. - PubMed
    1. Boulikas T. Poly (ADP-ribose) synthesis in blocked and damaged cells and its relation to carcinogenesis. Anticancer Res. 1992;12:885–98. - PubMed
    1. Tamzali Y, Borde L, Rols MP, Golzio M, Lyazrhi F, Teissie J. Successful treatment of equine sarcoids with cisplatin electrochemotherapy: A retrospective study of 48 cases. Equine Vet J. 2012;44:214–20. - PubMed
    1. Jin J, Ye MC, Wang LP, Li RX, Zhou Y, Wang Y, et al. Grade IV myelosuppression after induction chemotherapy of TPF on oral cancer: Clinical analysis of 29 cases. Shanghai Kou Qiang Yi Xue. 2014;23:219–23. - PubMed
    1. Prasaja Y, Sutandyo N, Andrajati R. Incidence of cisplatin-induced nephrotoxicity and associated factors among cancer patients in Indonesia. Asian Pac J Cancer Prev. 2015;16:1117–22. - PubMed

LinkOut - more resources