Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 1:16:248.
doi: 10.1186/s12889-016-2921-4.

Prevalence and clinical characteristics of metabolically healthy obese individuals and other obese/non-obese metabolic phenotypes in a working population: results from the Icaria study

Affiliations

Prevalence and clinical characteristics of metabolically healthy obese individuals and other obese/non-obese metabolic phenotypes in a working population: results from the Icaria study

Albert Goday et al. BMC Public Health. .

Abstract

Background: Metabolically healthy obese (MHO) phenotype may present with distinct characteristics compared with those with a metabolically unhealthy obese phenotype. Epidemiologic data on the distribution of these conditions in the working population are lacking. We aimed to evaluate the prevalence and clinical characteristics of MHO and other obese/non-obese metabolic phenotypes in a working population.

Methods: Cross-sectional analysis of all subjects who had undergone a medical examination with Ibermutuamur Prevention Society from May 2004 to December 2007. Participants were classified into 5 categories according to their body mass index (BMI); within each of these categories, participants were further classified as metabolically healthy (MH) or metabolically unhealthy (MUH) according to the modified NCEP-ATPIII criteria. A logistic regression analysis was performed to evaluate some clinically relevant factors associated with a MH status.

Results: In the overall population, the prevalence of the MHO phenotype was 8.6%. The proportions of MH individuals in the overweight and obese categories were: 87.1% (overweight) and 55.5% (obese I-III [58.8, 40.0, and 38.7% of the obese I, II, and III categories, respectively]). When the overweight and obese categories were considered, compared with individuals who were MUH, those who were MH tended to be younger and more likely to be female or participate in physical exercise; they were also less likely to smoke, or to be a heavy drinker. In the underweight and normal weight categories, compared with individuals who were MH, those who were MUH were more likely to be older, male, manual (blue collar) workers, smokers and heavy drinkers. Among participants in the MUH, normal weight group, the proportion of individuals with a sedentary lifestyle was higher relative to those in the MH, normal weight group. The factors more strongly associated with the MUH phenotype were BMI and age, followed by the presence of hypercholesterolemia, male sex, being a smoker, being a heavy drinker, and lack of physical exercise.

Conclusions: The prevalence of individuals with a MHO phenotype in the working population is high. This population may constitute an appropriate target group in whom to implement lifestyle modification initiatives to reduce the likelihood of transition to a MUH phenotype.

Keywords: Metabolic risk factors; Metabolically healthy obesity; Prevalence; Working population.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Prevalence of metabolically healthy/unhealthy individuals in the different BMI categories

Similar articles

Cited by

References

    1. Haslam DW, James WP. Obesity. Lancet. 2005;366:11971209. doi: 10.1016/S0140-6736(05)67483-1. - DOI - PubMed
    1. Klein S, Burke LE, Bray GA, Blair S, Allison DB, Pi-Sunyer X, Hong Y, Eckel RH. Clinical implications of obesity with specific focus on cardiovascular disease: a statement for professionals from the American Heart Association council on nutrition, physical activity, and metabolism, endorsed by the American College of Cardiology Foundation. Circulation. 2004;110:2952–67. doi: 10.1161/01.CIR.0000145546.97738.1E. - DOI - PubMed
    1. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78. doi: 10.1016/S0140-6736(08)60269-X. - DOI - PubMed
    1. Berrington De Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, Moore SC, Tobias GS, Anton-Culver H, Freeman LB, Beeson WL, Clipp SL, English DR, Folsom AR, Freedman M, Giles G, Hakansson N, Henderson KD, Hoffman-Bolton J, Hoppin JA, Koenig KL, Lee I, Linet MS, Park Y, Pocobelli G, Schatzkin A, Sesso HD, Weiderpass E, Willcox BJ, Wolk A, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363:2211–9. doi: 10.1056/NEJMoa1000367. - DOI - PMC - PubMed
    1. Phillips CM. Metabolically healthy obesity: definitions, determinants and clinical implications. Rev Endocr Metab Disord. 2013;14:219–27. doi: 10.1007/s11154-013-9252-x. - DOI - PubMed

Publication types

MeSH terms