Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 1;111(1):16-25.
doi: 10.1093/cvr/cvw070. Epub 2016 Apr 1.

Haemodynamic unloading reverses occlusive vascular lesions in severe pulmonary hypertension

Affiliations

Haemodynamic unloading reverses occlusive vascular lesions in severe pulmonary hypertension

Kohtaro Abe et al. Cardiovasc Res. .

Abstract

Aims: An important pathogenic mechanism in the development of idiopathic pulmonary arterial hypertension is hypothesized to be a cancer-like cellular proliferation independent of haemodynamics. However, because the vascular lesions are inseparably coupled with haemodynamic stress, the fate of the lesions is unknown when haemodynamic stress is eliminated.

Methods and results: We applied left pulmonary artery banding to a rat model with advanced pulmonary hypertension to investigate the effects of decreased haemodynamic stress on occlusive vascular lesions. Rats were given an injection of the VEGF blocker Sugen5416 and exposed to 3 weeks of hypoxia plus an additional 7 weeks of normoxia (total 10 weeks) (SU/Hx/Nx rats). The banding surgery to reduce haemodynamic stress to the left lung was done at 1 week prior to (preventive) or 5 weeks after (reversal) the SU5416 injection. All SU/Hx/Nx-exposed rats developed severe pulmonary hypertension and right ventricular hypertrophy. Histological analyses showed that the non-banded right lungs developed occlusive lesions including plexiform lesions with marked perivascular cell accumulation. In contrast, banding the left pulmonary artery not only prevented the development of but also reversed the established occlusive lesions as well as perivascular inflammation in the left lungs.

Conclusion: Our results indicate that haemodynamic stress is prerequisite to the development and progression of occlusive neointimal lesions in this rat model of severe pulmonary hypertension. We conclude that perivascular inflammation and occlusive neointimal arteriopathy are driven by haemodynamic stress.

Keywords: Haemodynamic stress; Occlusive lesion formation; Pulmonary arterial hypertension.

PubMed Disclaimer

Comment in

Publication types

MeSH terms