Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 15:312:262-271.
doi: 10.1016/j.jhazmat.2016.03.073. Epub 2016 Mar 26.

Single and multi-component adsorptive removal of bisphenol A and 2,4-dichlorophenol from aqueous solutions with transition metal modified inorganic-organic pillared clay composites: Effect of pH and presence of humic acid

Affiliations

Single and multi-component adsorptive removal of bisphenol A and 2,4-dichlorophenol from aqueous solutions with transition metal modified inorganic-organic pillared clay composites: Effect of pH and presence of humic acid

Krisiam Ortiz-Martínez et al. J Hazard Mater. .

Abstract

Pillared clay based composites containing transition metals and a surfactant, namely MAlOr-NaBt (Bt=bentonite; Or=surfactant; M=Ni(2+), Cu(2+)or Co(2+)), were prepared to study selectivity and capacity toward single and multiple-component adsorption of bisphenol A (BPA) and 2,4-diclorophenol (DCP) from water. Tests were also performed to account for the presence of natural organic matter in the form of humic acid (HA). Equilibrium adsorption capacities for single components increased as follows: NaBt<Al-NaBt<AlOr-NaBt<MAlOr-NaBt. The observed equilibrium loadings were ca. 5 and 3mgg(-1) for BPA and DCP, respectively, at neutral pH conditions and ambient temperature, representing an ordered of magnitude increase over the unmodified pillared clay capacities. Inclusion of the transition metal brought an increase of nearly two-fold in adsorption capacity over the materials modified only with surfactant. The MAlOr-NaBt adsorbents displayed remarkable selectivity for BPA. Multi-component fixed-bed tests, however, revealed competition between the adsorbates, with the exception of the CuAlOr-NaBt beds. Inclusion of HA, surprisingly, enhanced the phenols adsorption capacity. Preliminary regeneration tests suggested that the adsorbent capacity can be recovered via thermal treatment or by washing with alkaline solutions. The former strategy, however, requires surfactant replenishment. More complex schemes would be needed to deal with absorbed HA.

Keywords: Competitive adsorption; Fixed beds; Humic acid; Phenolic compounds; Transition metals.

PubMed Disclaimer

Publication types

LinkOut - more resources